Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering, and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China , Hefei 230026, China.
The Anhui Key Laboratory of Condensed Mater Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei 230031, China.
ACS Appl Mater Interfaces. 2017 Sep 20;9(37):32106-32113. doi: 10.1021/acsami.7b09428. Epub 2017 Sep 5.
Designing and exploring catalysts with high activity and stability for oxygen reduction reaction (ORR) at the cathode in acidic environments is imperative for the industrialization of proton exchange membrane fuel cells (PEMFCs). Theoretical calculations and experiments have demonstrated that alloying Pt with a transition metal can not only cut down the usage of scarce Pt metal but also improve performance of mass activity compared with pure Pt. Herein, we exhibit the preparation of nanoporous PtFe nanoparticles (np-PtFe NPs) supported on N-doped porous carbon sheets (NPCS) via facile in situ thermolysis of a Pt-modified Fe-based metal-organic framework (MOF). The np-PtFe/NPCS exhibit a more positive half-wave potential (0.92 V) compared with commercial Pt/C catalyst (0.883 V). The nanoporous structure allows our catalyst to possess high mass activity, which is found to be 0.533 A·mg and 3.04 times better than that of Pt/C (0.175 A·mg). Moreover, the conversion of PtFe NPs from porous to hollow structure can maintain the activity of electrocatalyst. Our strategy provides a facile design and synthesis process of noble-transition metal alloy electrocatalysts via noble metal modified MOFs as precursors.
设计和探索在酸性环境中用于阴极氧还原反应 (ORR) 的具有高活性和稳定性的催化剂对于质子交换膜燃料电池 (PEMFC) 的工业化至关重要。理论计算和实验表明,将 Pt 与过渡金属合金化不仅可以减少稀缺 Pt 金属的使用量,而且还可以提高质量活性的性能,优于纯 Pt。在此,我们通过简便的原位热解 Pt 修饰的 Fe 基金属有机骨架 (MOF) 展示了负载在 N 掺杂多孔碳片 (NPCS) 上的纳米多孔 PtFe 纳米颗粒 (np-PtFe NPs) 的制备。与商业 Pt/C 催化剂 (0.883 V) 相比,np-PtFe/NPCS 具有更正的半波电位 (0.92 V)。纳米多孔结构使我们的催化剂具有高的质量活性,其值为 0.533 A·mg,比 Pt/C (0.175 A·mg) 高 3.04 倍。此外,PtFe NPs 从多孔到空心结构的转化可以保持电催化剂的活性。我们的策略通过贵金属修饰的 MOF 作为前体提供了一种设计和合成贵金属-过渡金属合金电催化剂的简便方法。