Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046 Xinjiang, PR China.
Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046 Xinjiang, PR China.
J Colloid Interface Sci. 2019 Feb 1;535:415-424. doi: 10.1016/j.jcis.2018.10.007. Epub 2018 Oct 4.
Nitrogen-doped carbon materials are promising oxygen reduction reaction (ORR) electrocatalysts owing to high performance and stability. Herein, a three-dimensional porous bio-MOF-1, Zn(Ad)(Bpdc)O·2MeNH (Ad = adeninate; Bpdc = biphenyldicarboxylate), was used as precursor to fabricate N-doped porous carbon materials (NPC-1000-ts, where 1000 stands for the carbonization temperature and t represents the carbonization time, t = 2, 3 and 4 h) by simple carbonization under Ar atmosphere. The porous carbon materials had different contents of graphitic N and graphitization degrees of carbon. The catalytic activities of NPCs as metal-free ORR electrocatalysts were studied. The obtained NPC-1000-4 (pyrolysis under 1000 °C for 4 h) displayed outstanding ORR performance, with a positive onset potential (-0.012 V), a higher half-wave potential (E) (-0.13 V) and a larger limiting current density (-5.76 mA/cm) at -0.8 V (vs. Ag/AgCl) in KOH solution (0.1 M) than those of commercial Pt/C (20 wt%) catalyst (E = -0.014 V, E = -0.14 V and -5.08 mA/cm at -0.8 V vs. Ag/AgCl). Obviously, the onset potential of NPC-1000-4 surpassed that of Pt/C, which was rare among currently available studies on metal-free nitrogen-doped porous carbon materials. Graphitic N significantly affected ORR catalytic performance besides graphitization degree of carbon. Meanwhile, NPC-1000-4 allowed an effective 4e-dominant ORR process, and most importantly, coupled with much higher long-term stability (89.5%) than that of commercial Pt/C (20 wt%, 65.8%) catalyst and higher resistance to methanol poisoning. The remarkable ORR activity of NPC-1000-4 can be ascribed to large surface area, considerable hierarchical porosity, high graphitization degree and synergism between enriched active sites and high portion of graphitic N. Overall, the findings guide the development of MOF-derived metal-free N-doped carbon materials as high-activity non-precious electrocatalysts for ORR.
氮掺杂碳材料因其高活性和稳定性而成为很有前途的氧还原反应(ORR)电催化剂。在此,采用三维多孔生物 MOF-1,Zn(Ad)(Bpdc)O·2MeNH(Ad=腺嘌呤;Bpdc=联苯二甲酸酯)作为前驱体,通过在 Ar 气氛下简单碳化制备氮掺杂多孔碳材料(NPC-1000-ts,其中 1000 代表碳化温度,t 代表碳化时间,t=2、3 和 4 h)。多孔碳材料具有不同含量的石墨 N 和不同程度的石墨化碳。研究了 NPC 作为无金属 ORR 电催化剂的催化活性。所得 NPC-1000-4(在 1000°C 下热解 4 h)在 KOH 溶液(0.1 M)中在-0.8 V(相对于 Ag/AgCl)下表现出出色的 ORR 性能,具有正起始电位(-0.012 V)、更高的半波电位(E)(-0.13 V)和更大的极限电流密度(-5.76 mA/cm),优于商业 Pt/C(20 wt%)催化剂(E=-0.014 V,E=-0.14 V 和-5.08 mA/cm 在-0.8 V 相对于 Ag/AgCl)。显然,NPC-1000-4 的起始电位超过了 Pt/C,这在目前关于无金属氮掺杂多孔碳材料的研究中很少见。除了石墨化程度外,石墨 N 也显著影响 ORR 催化性能。同时,NPC-1000-4 允许有效的 4e-主导 ORR 过程,最重要的是,与商业 Pt/C(20 wt%,65.8%)催化剂相比,其具有更高的长期稳定性(89.5%)和更高的抗甲醇中毒能力。NPC-1000-4 的显著 ORR 活性可归因于大比表面积、相当大的分级孔隙率、高石墨化程度以及富活性位点与高比例石墨 N 之间的协同作用。总体而言,这些发现为开发 MOF 衍生的无金属氮掺杂碳材料作为高效非贵金属 ORR 电催化剂提供了指导。