Suppr超能文献

细菌凝聚素MukB通过隔离超螺旋和稳定拓扑孤立环来压缩DNA。

The bacterial condensin MukB compacts DNA by sequestering supercoils and stabilizing topologically isolated loops.

作者信息

Kumar Rupesh, Grosbart Małgorzata, Nurse Pearl, Bahng Soon, Wyman Claire L, Marians Kenneth J

机构信息

From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and.

the Departments of Molecular Genetics and.

出版信息

J Biol Chem. 2017 Oct 13;292(41):16904-16920. doi: 10.1074/jbc.M117.803312. Epub 2017 Aug 25.

Abstract

MukB is a structural maintenance of chromosome-like protein required for DNA condensation. The complete condensin is a large tripartite complex of MukB, the kleisin, MukF, and an accessory protein, MukE. As found previously, MukB DNA condensation is a stepwise process. We have defined these steps topologically. They proceed first via the formation of negative supercoils that are sequestered by the protein followed by hinge-hinge interactions between MukB dimers that stabilize topologically isolated loops in the DNA. MukB itself is sufficient to mediate both of these topological alterations; neither ATP nor MukEF is required. We show that the MukB hinge region binds DNA and that this region of the protein is involved in sequestration of supercoils. Cells carrying mutations in the MukB hinge that reduce DNA condensation exhibit nucleoid decondensation .

摘要

MukB是一种DNA浓缩所需的染色体结构维持蛋白。完整的凝聚素是由MukB、kleisin、MukF和一种辅助蛋白MukE组成的大型三方复合物。如先前发现的那样,MukB介导的DNA浓缩是一个逐步的过程。我们已经从拓扑学角度定义了这些步骤。它们首先通过形成被蛋白质隔离的负超螺旋进行,随后是MukB二聚体之间的铰链-铰链相互作用,这种相互作用稳定了DNA中拓扑学上隔离的环。MukB本身足以介导这两种拓扑学改变;既不需要ATP也不需要MukEF。我们表明,MukB铰链区结合DNA,并且该蛋白区域参与超螺旋的隔离。携带MukB铰链区突变而导致DNA浓缩减少的细胞表现出类核解聚。

相似文献

1
The bacterial condensin MukB compacts DNA by sequestering supercoils and stabilizing topologically isolated loops.
J Biol Chem. 2017 Oct 13;292(41):16904-16920. doi: 10.1074/jbc.M117.803312. Epub 2017 Aug 25.
2
The MukB-topoisomerase IV interaction is required for proper chromosome compaction.
J Biol Chem. 2017 Oct 13;292(41):16921-16932. doi: 10.1074/jbc.M117.803346. Epub 2017 Aug 25.
3
MukB-mediated Catenation of DNA Is ATP and MukEF Independent.
J Biol Chem. 2016 Nov 11;291(46):23999-24008. doi: 10.1074/jbc.M116.749994. Epub 2016 Oct 3.
4
The role of MukE in assembling a functional MukBEF complex.
J Mol Biol. 2011 Sep 30;412(4):578-90. doi: 10.1016/j.jmb.2011.08.009. Epub 2011 Aug 10.
6
Dynamic architecture of the Escherichia coli structural maintenance of chromosomes (SMC) complex, MukBEF.
Nucleic Acids Res. 2019 Oct 10;47(18):9696-9707. doi: 10.1093/nar/gkz696.
7
Intersubunit and intrasubunit interactions driving the MukBEF ATPase.
J Biol Chem. 2022 Jun;298(6):101964. doi: 10.1016/j.jbc.2022.101964. Epub 2022 Apr 20.
8
Focal localization of MukBEF condensin on the chromosome requires the flexible linker region of MukF.
FEBS J. 2009 Sep;276(18):5101-10. doi: 10.1111/j.1742-4658.2009.07206.x. Epub 2009 Aug 7.
9
Antagonistic interactions of kleisins and DNA with bacterial Condensin MukB.
J Biol Chem. 2006 Nov 10;281(45):34208-17. doi: 10.1074/jbc.M606723200. Epub 2006 Sep 18.
10
MukEF Is required for stable association of MukB with the chromosome.
J Bacteriol. 2007 Oct;189(19):7062-8. doi: 10.1128/JB.00770-07. Epub 2007 Jul 20.

引用本文的文献

2
Spatio-temporal organization of the chromosome from base to cellular length scales.
EcoSal Plus. 2024 Dec 12;12(1):eesp00012022. doi: 10.1128/ecosalplus.esp-0001-2022. Epub 2024 Jun 12.
3
Condensin pinches a short negatively supercoiled DNA loop during each round of ATP usage.
EMBO J. 2023 Feb 1;42(3):e111913. doi: 10.15252/embj.2022111913. Epub 2022 Dec 19.
5
Intersubunit and intrasubunit interactions driving the MukBEF ATPase.
J Biol Chem. 2022 Jun;298(6):101964. doi: 10.1016/j.jbc.2022.101964. Epub 2022 Apr 20.
6
The MukB-topoisomerase IV interaction mutually suppresses their catalytic activities.
Nucleic Acids Res. 2022 Mar 21;50(5):2621-2634. doi: 10.1093/nar/gkab1027.
7
Bridging-induced phase separation induced by cohesin SMC protein complexes.
Sci Adv. 2021 Feb 10;7(7). doi: 10.1126/sciadv.abe5905. Print 2021 Feb.
8
The condensin holocomplex cycles dynamically between open and collapsed states.
Nat Struct Mol Biol. 2020 Dec;27(12):1134-1141. doi: 10.1038/s41594-020-0508-3. Epub 2020 Sep 28.
9
A topological analysis of difference topology experiments of condensin with topoisomerase II.
Biol Open. 2020 Apr 3;9(4):bio048603. doi: 10.1242/bio.048603.
10
A Well-Mixed E. coli Genome: Widespread Contacts Revealed by Tracking Mu Transposition.
Cell. 2020 Feb 20;180(4):703-716.e18. doi: 10.1016/j.cell.2020.01.031. Epub 2020 Feb 13.

本文引用的文献

1
The MukB-topoisomerase IV interaction is required for proper chromosome compaction.
J Biol Chem. 2017 Oct 13;292(41):16921-16932. doi: 10.1074/jbc.M117.803346. Epub 2017 Aug 25.
2
MukB-mediated Catenation of DNA Is ATP and MukEF Independent.
J Biol Chem. 2016 Nov 11;291(46):23999-24008. doi: 10.1074/jbc.M116.749994. Epub 2016 Oct 3.
4
Single-Molecule Imaging Reveals a Collapsed Conformational State for DNA-Bound Cohesin.
Cell Rep. 2016 May 3;15(5):988-998. doi: 10.1016/j.celrep.2016.04.003. Epub 2016 Apr 21.
5
SMC complexes: from DNA to chromosomes.
Nat Rev Mol Cell Biol. 2016 Jul;17(7):399-412. doi: 10.1038/nrm.2016.30. Epub 2016 Apr 14.
7
Multistep assembly of DNA condensation clusters by SMC.
Nat Commun. 2016 Jan 4;7:10200. doi: 10.1038/ncomms10200.
8
Interallelic complementation provides functional evidence for cohesin-cohesin interactions on DNA.
Mol Biol Cell. 2015 Nov 15;26(23):4224-35. doi: 10.1091/mbc.E15-06-0331. Epub 2015 Sep 16.
9
Topological patterns in two-dimensional gel electrophoresis of DNA knots.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5471-7. doi: 10.1073/pnas.1506907112. Epub 2015 Sep 8.
10
The Smc5/6 Complex Is an ATP-Dependent Intermolecular DNA Linker.
Cell Rep. 2015 Sep 1;12(9):1471-82. doi: 10.1016/j.celrep.2015.07.048. Epub 2015 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验