Suppr超能文献

miR319 和 TCP 转录因子在叶片发育中的作用。

Roles of miR319 and TCP Transcription Factors in Leaf Development.

机构信息

Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seikacho, Kyoto 619-0284, Japan

Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan.

出版信息

Plant Physiol. 2017 Oct;175(2):874-885. doi: 10.1104/pp.17.00732. Epub 2017 Aug 25.

Abstract

Sophisticated regulation of gene expression, including microRNAs (miRNAs) and their target genes, is required for leaf differentiation, growth, and senescence. The impact of miR319 and its target , , and () genes on leaf development has been extensively investigated, but the redundancies of these gene families often interfere with the evaluation of their function and regulation in the developmental context. Here, we present the genetic evidence of the involvement of the and gene families in Arabidopsis () leaf development. Single mutations in and genes moderately inhibited the formation of leaf serrations, whereas double mutations increased the extent of this inhibition and resulted in the formation of smooth leaves. Mutations in and gain-of-function mutations in the gene conferred resistance against miR319 and impaired the cotyledon boundary and leaf serration formation. These mutations functionally associated with genes, which regulate the cotyledon boundary and leaf serration formation. In contrast, loss-of-function mutations in miR319-targeted and nontargeted genes cooperatively induced the formation of serrated leaves in addition to changes in the levels of their downstream gene transcript. Taken together, these findings demonstrate that the and gene families underlie robust and multilayer control of leaf development. This study also provides a framework toward future researches on redundant miRNAs and transcription factors in Arabidopsis and crop plants.

摘要

精细的基因表达调控,包括 microRNAs(miRNAs)及其靶基因,对于叶片的分化、生长和衰老至关重要。miR319 及其靶基因 、 和 ()基因对叶片发育的影响已经得到了广泛的研究,但这些基因家族的冗余性常常干扰了它们在发育背景下的功能和调控的评估。在这里,我们提出了 和 基因家族参与拟南芥()叶片发育的遗传证据。 和 基因的单个突变中度抑制了叶片锯齿的形成,而双突变则增加了这种抑制的程度,并导致了叶片的平滑形成。 和 基因的突变以及 基因的功能获得性突变赋予了对 miR319 的抗性,并损害了子叶边界和叶片锯齿的形成。这些突变与 基因在功能上相关,后者调节子叶边界和叶片锯齿的形成。相比之下,miR319 靶向和非靶向的 基因的功能丧失突变除了改变其下游基因转录本的水平外,还协同诱导锯齿状叶片的形成。总之,这些发现表明 和 基因家族是叶片发育的稳健和多层次调控的基础。这项研究还为未来在拟南芥和作物植物中冗余 miRNAs 和转录因子的研究提供了一个框架。

相似文献

1
Roles of miR319 and TCP Transcription Factors in Leaf Development.
Plant Physiol. 2017 Oct;175(2):874-885. doi: 10.1104/pp.17.00732. Epub 2017 Aug 25.
2
Spatial Control of Gene Expression by miR319-Regulated TCP Transcription Factors in Leaf Development.
Plant Physiol. 2018 Feb;176(2):1694-1708. doi: 10.1104/pp.17.00823. Epub 2017 Nov 13.
3
Control of jasmonate biosynthesis and senescence by miR319 targets.
PLoS Biol. 2008 Sep 23;6(9):e230. doi: 10.1371/journal.pbio.0060230.
4
Repression of cell proliferation by miR319-regulated TCP4.
Mol Plant. 2014 Oct;7(10):1533-44. doi: 10.1093/mp/ssu084. Epub 2014 Jul 22.
5
miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22534-9. doi: 10.1073/pnas.0908718106. Epub 2009 Dec 10.
8
Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation.
Plant J. 2011 Aug;67(4):595-607. doi: 10.1111/j.1365-313X.2011.04616.x. Epub 2011 Jul 4.

引用本文的文献

1
Unraveling the Multilayered Regulatory Networks of miRNAs and PhasiRNAs in .
Plants (Basel). 2025 May 29;14(11):1650. doi: 10.3390/plants14111650.
2
Overexpression of Alters Tuber Number and Size in Potato ( L.).
Plants (Basel). 2025 May 7;14(9):1403. doi: 10.3390/plants14091403.
3
TCP3 is a substrate of the COP1/SPA ubiquitin ligase to regulate anthocyanin accumulation and flowering time in .
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2426423122. doi: 10.1073/pnas.2426423122. Epub 2025 May 13.
4
Diurnal rhythms in durum wheat triggered by Rhopalosiphum padi (bird cherry-oat aphid).
BMC Plant Biol. 2025 Apr 10;25(1):459. doi: 10.1186/s12870-025-06100-0.
5
MpmiR319 promotes gemma/gemma cup formation in the liverwort Marchantia polymorpha.
J Exp Bot. 2025 Aug 21;76(12):3378-3389. doi: 10.1093/jxb/eraf148.
7
Overexpression of or Its Dominant Repressor Form, , Causes Male Infertility in Arabidopsis.
Int J Mol Sci. 2025 Feb 20;26(5):1813. doi: 10.3390/ijms26051813.
9
New insights into the salt-responsive regulation in eelgrass at transcriptional and post-transcriptional levels.
Front Plant Sci. 2025 Feb 6;16:1497064. doi: 10.3389/fpls.2025.1497064. eCollection 2025.
10

本文引用的文献

1
TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis.
PLoS Genet. 2017 Jun 19;13(6):e1006856. doi: 10.1371/journal.pgen.1006856. eCollection 2017 Jun.
2
Control of cell proliferation by microRNAs in plants.
Curr Opin Plant Biol. 2016 Dec;34:68-76. doi: 10.1016/j.pbi.2016.10.003. Epub 2016 Oct 26.
3
Active suppression of a leaf meristem orchestrates determinate leaf growth.
Elife. 2016 Oct 6;5:e15023. doi: 10.7554/eLife.15023.
5
TCP factors: new kids on the signaling block.
Curr Opin Plant Biol. 2016 Oct;33:33-41. doi: 10.1016/j.pbi.2016.05.006. Epub 2016 Jun 14.
7
Evolutionary and Environmental Forces Sculpting Leaf Development.
Curr Biol. 2016 Apr 4;26(7):R297-306. doi: 10.1016/j.cub.2016.02.033.
8
The role of small RNAs in vegetative shoot development.
Curr Opin Plant Biol. 2016 Feb;29:64-72. doi: 10.1016/j.pbi.2015.11.006. Epub 2015 Dec 31.
9
Behavior of Leaf Meristems and Their Modification.
Front Plant Sci. 2015 Dec 1;6:1060. doi: 10.3389/fpls.2015.01060. eCollection 2015.
10
TCP three-way handshake: linking developmental processes with plant immunity.
Trends Plant Sci. 2015 Apr;20(4):238-45. doi: 10.1016/j.tplants.2015.01.005. Epub 2015 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验