文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在转录和转录后水平上对鳗草盐响应调节的新见解。

New insights into the salt-responsive regulation in eelgrass at transcriptional and post-transcriptional levels.

作者信息

Zhao Huan, Dong Xu, Yang Dazuo, Ge Qingchao, Lu Peng, Liu Chang

机构信息

College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.

Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China.

出版信息

Front Plant Sci. 2025 Feb 6;16:1497064. doi: 10.3389/fpls.2025.1497064. eCollection 2025.


DOI:10.3389/fpls.2025.1497064
PMID:39980478
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11840677/
Abstract

INTRODUCTION: The adaptation mechanisms of marine plants to the environments have garnered significant attention in recent years. Eelgrass (), a representative marine angiosperm, serves as an ideal model for investigating the mechanisms underlying salt tolerance. METHODS: This study integrated mRNA, sRNA, and degradome sequencing data to identify key genes associated with salt tolerance in eelgrass. RESULTS: The results indicate that a series of genes involved in biological processes such as "in response to water deprivation" and "biosynthesis of secondary metabolites" respond to salt stress. Analysis of cis-regulatory elements and expression similarities suggests that the ABA synthase 9-cis-epoxycarotenoid dioxygenase (NCED) may be regulated by ERF members, while phenylalanine ammonia-lyase (PAL) may be regulated by MYB members. At the post-transcriptional regulation level, miRNA156 and miRNA166 might be involved in the response by regulating potential target genes, such as members of the WRKY and HD-ZIP families. Additionally, eelgrass exhibits unique responses to salt, such as the up-regulation of genes involved in the "fucose biosynthetic process". These findings enhance our understanding of how eelgrass adapts to the marine environment. DISCUSSION: As a marine monocotyledon, eelgrass is helpful to find conserved salt tolerance mechanisms by cross-species comparison. By examining the transcriptional responses of homologous genes in eelgrass, rice, and maize, we identified several groups of genes that are conserved in their response to salt stress. These conserved gene resources may provide targets for genetic engineering to improve the salt tolerance of crops.

摘要

引言:近年来,海洋植物对环境的适应机制备受关注。海草()作为一种典型的海洋被子植物,是研究耐盐机制的理想模型。 方法:本研究整合了mRNA、sRNA和降解组测序数据,以鉴定与海草耐盐性相关的关键基因。 结果:结果表明,一系列参与“对缺水的响应”和“次生代谢物生物合成”等生物过程的基因对盐胁迫有响应。对顺式调控元件和表达相似性的分析表明,ABA合酶9-顺式环氧类胡萝卜素双加氧酶(NCED)可能受ERF成员调控,而苯丙氨酸解氨酶(PAL)可能受MYB成员调控。在转录后调控水平上,miRNA156和miRNA166可能通过调控潜在靶基因(如WRKY和HD-ZIP家族成员)参与响应。此外,海草对盐表现出独特的响应,如参与“岩藻糖生物合成过程”的基因上调。这些发现加深了我们对海草如何适应海洋环境的理解。 讨论:作为一种海洋单子叶植物,海草有助于通过跨物种比较找到保守的耐盐机制。通过研究海草、水稻和玉米中同源基因的转录反应,我们鉴定出了几组在对盐胁迫的反应中保守的基因。这些保守的基因资源可能为提高作物耐盐性的基因工程提供靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/f15a997ded70/fpls-16-1497064-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/929fef5728a7/fpls-16-1497064-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/36958f3628ad/fpls-16-1497064-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/e1ecad17ba56/fpls-16-1497064-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/44aff2f5963d/fpls-16-1497064-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/26abf58ad544/fpls-16-1497064-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/f15a997ded70/fpls-16-1497064-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/929fef5728a7/fpls-16-1497064-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/36958f3628ad/fpls-16-1497064-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/e1ecad17ba56/fpls-16-1497064-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/44aff2f5963d/fpls-16-1497064-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/26abf58ad544/fpls-16-1497064-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922e/11840677/f15a997ded70/fpls-16-1497064-g006.jpg

相似文献

[1]
New insights into the salt-responsive regulation in eelgrass at transcriptional and post-transcriptional levels.

Front Plant Sci. 2025-2-6

[2]
NO enhances the adaptability to high-salt environments by regulating osmotic balance, antioxidant defense, and ion homeostasis in eelgrass based on transcriptome and metabolome analysis.

Front Plant Sci. 2024-2-7

[3]
Dynamic transcriptomics and physiological insights reveal multi-tissue salt adaptation mechanisms in Amaranthus hypochondriacus across stress gradients.

Plant Cell Rep. 2025-5-3

[4]
Transcriptional mechanisms underlying thiazolidine-4-carboxylic acid (T4C)-primed salt tolerance in Arabidopsis.

Plant Cell Rep. 2025-4-28

[5]
The comparative transcriptome analysis of two green super rice genotypes with varying tolerance to salt stress.

Mol Biol Rep. 2023-12-18

[6]
Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs.

BMC Genomics. 2018-9-26

[7]
Microbial communities on eelgrass () thriving in Tokyo Bay and the possible source of leaf-attached microbes.

Front Microbiol. 2023-1-6

[8]
Surface chemical defence of the eelgrass Zostera marina against microbial foulers.

Sci Rep. 2019-2-26

[9]
The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants.

Planta. 2017-8-31

[10]
Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.

BMC Plant Biol. 2020-12-30

引用本文的文献

[1]
Genome-Wide Identification and Expression Analysis of PP2C Gene Family in Eelgrass.

Genes (Basel). 2025-5-29

本文引用的文献

[1]
Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress.

Biology (Basel). 2024-8-29

[2]
Birch WRKY transcription factor, BpWRKY32, confers salt tolerance by mediating stomatal closing, proline accumulation, and reactive oxygen species scavenging.

Plant Physiol Biochem. 2024-5

[3]
Overexpression of transcription factor FaMYB63 enhances salt tolerance by directly binding to the SOS1 promoter in Arabidopsis thaliana.

Plant Mol Biol. 2024-3-21

[4]
NO enhances the adaptability to high-salt environments by regulating osmotic balance, antioxidant defense, and ion homeostasis in eelgrass based on transcriptome and metabolome analysis.

Front Plant Sci. 2024-2-7

[5]
A novel miR160a-GmARF16-GmMYC2 module determines soybean salt tolerance and adaptation.

New Phytol. 2024-3

[6]
Combined transcriptome and proteome analysis reveal the key physiological processes in seed germination stimulated by decreased salinity in the seagrass Zostera marina L.

BMC Plant Biol. 2023-11-30

[7]
Heat-responsive microRNAs participate in regulating the pollen fertility stability of CMS-D2 restorer line under high-temperature stress.

Biol Res. 2023-11-9

[8]
A Transcription Factor NAC4 Gene of Enhances Salt and Drought Tolerance through Regulating ABA Synthesis.

Plants (Basel). 2023-8-15

[9]
bra-miR167a Targets and Negatively Regulates Immunity against .

Int J Mol Sci. 2023-7-24

[10]
How Plants Tolerate Salt Stress.

Curr Issues Mol Biol. 2023-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索