Suppr超能文献

Solubilisation of a glutamate binding protein from rat brain.

作者信息

Kuonen D R, Roberts P J

出版信息

J Neurochem. 1987 Jul;49(1):272-81. doi: 10.1111/j.1471-4159.1987.tb03426.x.

Abstract

Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验