STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Department of Food Sciences, Université Laval, Québec, QC, Canada, G1V 0A6.
Food Research and Development Centre, Agriculture and Agri-Food Canada, St-Hyacinthe, QC, Canada, J2S 8E3.
J Dairy Sci. 2017 Nov;100(11):8838-8848. doi: 10.3168/jds.2017-13015. Epub 2017 Aug 23.
Microfiltration is largely used to separate casein micelles from milk serum proteins (SP) to produce a casein-enriched retentate for cheese making and a permeate enriched in native SP. Skim milk microfiltration is typically performed with ceramic membranes and little information is available about the efficiency of spiral-wound (SW) membranes. We determined the effect of SW membrane pore size (0.1 and 0.2 µm) on milk protein separation in total recirculation mode with a transmembrane pressure gradient to evaluate the separation efficiency of milk proteins and energy consumption after repeated concentration and diafiltration (DF). Results obtained in total recirculation mode demonstrated that pore size diameter had no effect on the permeate flux, but a drastic loss of casein was observed in permeate for the 0.2-µm SW membrane. Concentration-DF experiments (concentration factor of 3.0× with 2 sequential DF) were performed with the optimal 0.1-µm SW membrane. We compared these results to previous data we generated with the 0.1-µm graded permeability (GP) membrane. Whereas casein rejection was similar for both membranes, SP rejection was higher for the 0.1-µm SW membrane (rejection coefficient of 0.75 to 0.79 for the 0.1-µm SW membrane versus 0.46 to 0.49 for the GP membrane). The 0.1-µm SW membrane consumed less energy (0.015-0.024 kWh/kg of permeate collected) than the GP membrane (0.077-0.143 kWh/kg of permeate collected). A techno-economic evaluation led us to conclude that the 0.1-µm SW membranes may represent a better option to concentrate casein for cheese milk; however, the GP membrane has greater permeability and its longer lifetime (about 10 yr) potentially makes it an interesting option.
微滤主要用于从乳清蛋白中将酪蛋白胶束分离出来,以生产用于制作奶酪的富含酪蛋白的截留物和富含天然乳清蛋白的渗透物。脱脂奶微滤通常使用陶瓷膜进行,而关于螺旋卷式(SW)膜的效率信息很少。我们在全循环模式下,用跨膜压力梯度确定 SW 膜孔径(0.1 和 0.2 µm)对牛奶蛋白分离的影响,以评估牛奶蛋白的分离效率和重复浓缩和渗滤(DF)后的能量消耗。在全循环模式下获得的结果表明,孔径直径对渗透通量没有影响,但在 0.2 µm SW 膜的渗透物中观察到酪蛋白的大量损失。进行了浓缩-DF 实验(浓缩因子为 3.0×,进行 2 次 DF),使用最佳的 0.1 µm SW 膜。我们将这些结果与之前用 0.1 µm 分级渗透率(GP)膜生成的数据进行了比较。虽然两种膜的酪蛋白截留率相似,但 SP 截留率更高的是 0.1 µm SW 膜(0.1 µm SW 膜的截留系数为 0.75 至 0.79,而 GP 膜为 0.46 至 0.49)。0.1 µm SW 膜消耗的能量更少(收集 1kg 渗透物所需的能量为 0.015-0.024 kWh),而 GP 膜(收集 1kg 渗透物所需的能量为 0.077-0.143 kWh)。技术经济评估使我们得出结论,0.1 µm SW 膜可能是浓缩奶酪牛奶中酪蛋白的更好选择;然而,GP 膜具有更大的渗透性,其更长的使用寿命(约 10 年)使其成为一个有趣的选择。