Suppr超能文献

在第37轮CAPRI中,使用LZerD对接和基于模板的建模以及组合评分函数提高了性能。

Improved performance in CAPRI round 37 using LZerD docking and template-based modeling with combined scoring functions.

作者信息

Peterson Lenna X, Shin Woong-Hee, Kim Hyungrae, Kihara Daisuke

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, Indiana.

Department of Computer Science, Purdue University, West Lafayette, Indiana.

出版信息

Proteins. 2018 Mar;86 Suppl 1(Suppl 1):311-320. doi: 10.1002/prot.25376. Epub 2017 Sep 11.

Abstract

We report our group's performance for protein-protein complex structure prediction and scoring in Round 37 of the Critical Assessment of PRediction of Interactions (CAPRI), an objective assessment of protein-protein complex modeling. We demonstrated noticeable improvement in both prediction and scoring compared to previous rounds of CAPRI, with our human predictor group near the top of the rankings and our server scorer group at the top. This is the first time in CAPRI that a server has been the top scorer group. To predict protein-protein complex structures, we used both multi-chain template-based modeling (TBM) and our protein-protein docking program, LZerD. LZerD represents protein surfaces using 3D Zernike descriptors (3DZD), which are based on a mathematical series expansion of a 3D function. Because 3DZD are a soft representation of the protein surface, LZerD is tolerant to small conformational changes, making it well suited to docking unbound and TBM structures. The key to our improved performance in CAPRI Round 37 was to combine multi-chain TBM and docking. As opposed to our previous strategy of performing docking for all target complexes, we used TBM when multi-chain templates were available and docking otherwise. We also describe the combination of multiple scoring functions used by our server scorer group, which achieved the top rank for the scorer phase.

摘要

我们报告了我们团队在蛋白质-蛋白质相互作用预测关键评估(CAPRI)第37轮中蛋白质-蛋白质复合物结构预测和评分方面的表现,这是对蛋白质-蛋白质复合物建模的客观评估。与CAPRI的前几轮相比,我们在预测和评分方面都有显著提高,我们的人类预测小组在排名中接近榜首,我们的服务器评分小组位居榜首。这是CAPRI中首次有服务器成为得分最高的小组。为了预测蛋白质-蛋白质复合物结构,我们使用了基于多链模板的建模(TBM)和我们的蛋白质-蛋白质对接程序LZerD。LZerD使用3D泽尼克描述符(3DZD)来表示蛋白质表面,3DZD基于一个3D函数的数学级数展开。由于3DZD是蛋白质表面的一种柔性表示,LZerD能够容忍小的构象变化,使其非常适合对接未结合和TBM结构。我们在CAPRI第37轮中表现提升的关键在于将多链TBM和对接相结合。与我们之前对所有目标复合物进行对接的策略不同,当有多链模板可用时我们使用TBM,否则使用对接。我们还描述了我们服务器评分小组使用的多种评分函数的组合,该组合在评分阶段获得了第一名。

相似文献

引用本文的文献

5
RL-MLZerD: Multimeric protein docking using reinforcement learning.RL-MLZerD:使用强化学习的多聚体蛋白质对接
Front Mol Biosci. 2022 Aug 26;9:969394. doi: 10.3389/fmolb.2022.969394. eCollection 2022.
8
Protein Docking Model Evaluation by Graph Neural Networks.基于图神经网络的蛋白质对接模型评估
Front Mol Biosci. 2021 May 25;8:647915. doi: 10.3389/fmolb.2021.647915. eCollection 2021.
9
Performance and Its Limits in Rigid Body Protein-Protein Docking.刚体蛋白质-蛋白质对接的性能及其限制。
Structure. 2020 Sep 1;28(9):1071-1081.e3. doi: 10.1016/j.str.2020.06.006. Epub 2020 Jul 9.

本文引用的文献

5
Structural templates for comparative protein docking.用于比较蛋白质对接的结构模板。
Proteins. 2015 Sep;83(9):1563-70. doi: 10.1002/prot.24736. Epub 2015 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验