Suppr超能文献

变废为宝——一种用于合成高效锂氧电池阴极材料的新方法。

Turning Waste Chemicals into Wealth-A New Approach To Synthesize Efficient Cathode Material for an Li-O Battery.

机构信息

Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology , Beijing 100081, China.

出版信息

ACS Appl Mater Interfaces. 2017 Sep 20;9(37):31907-31912. doi: 10.1021/acsami.7b09483. Epub 2017 Sep 5.

Abstract

An Li-O battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li-O battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing "waste" such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.

摘要

锂离子电池需要吸氧阴极具有高导电性、快速氧气扩散性、结构稳定性,并且通常具有电催化活性。在这方面,催化剂修饰的多孔碳材料是首选的空气阴极。或者,生物质衍生的碳材料具有从废水中去除重金属和有毒金属离子的巨大能力,形成金属吸附的多孔碳材料。空气阴极和金属吸附的生物质衍生碳之间的相似结构很好地连接了这两个不相关的领域。在这项研究中,我们研究了直接从乙醇污泥残渣中合成的生物炭材料 Ag-ESB 在可充电非质子 Li-O 电池中的电化学活性。Ag 离子从污水中被吸附,并在生物炭表面形成具有均匀覆盖的 Ag 纳米颗粒。所制备的材料在电池测试中表现出良好的电化学性能,尤其是在电池效率和循环性能方面。这项研究通过再利用生物燃料污泥等“废物”为合成高效阴极材料提供了可能性。对于储能系统和废物回收来说,这是一种经济和环保的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验