Suppr超能文献

通过调节界面吸附优化和改变量子点-肽底物缀合物的蛋白水解转化模式。

Optimization and Changes in the Mode of Proteolytic Turnover of Quantum Dot-Peptide Substrate Conjugates through Moderation of Interfacial Adsorption.

机构信息

Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.

出版信息

ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30359-30372. doi: 10.1021/acsami.7b07519. Epub 2017 Aug 28.

Abstract

Enzymes have many important roles in biology and industry, and proteases are one of the most important classes of enzymes. Semiconductor quantum dots (QDs) are attractive materials for developing protease activity probes because of their advantageous physical and optical properties; however, interactions between a protease and a QD conjugated with its substrate can affect the turnover of that substrate. Here, we study the turnover of multivalent QD-peptide substrate conjugates as a function of multiple parameters: (i) the ligand coating on the QD, including dihydrolipoic acid (DHLA), glutathione (GSH), DHLA-poly(ethylene glycol) (DHLA-PEG), and DHLA-zwitterionic sulfobetaine (DHLA-SB); (ii) the identity of the protease, including trypsin, thrombin, and plasmin; and (iii) the number of substrate and nonsubstrate biomacromolecules conjugated per QD. We show that limiting protease adsorption on QDs is critical for optimizing the turnover of conjugated peptide substrates. Protease adsorption is inhibitory, and very strong adsorption leads to an apparent "scooting" mode of activity with limited turnover. In contrast, with weaker adsorption, enhancements in the turnover rate likely result from a "hopping" mode of activity. The putative hopping mode is thought to feature processive turnover of all substrates in multivalent conjugates with a rate-limiting step of diffusion between individual conjugates, and the magnitude of such enhancements increases with decreases in adsorption. Although it was possible to passivate DHLA- and GSH-coated QDs with high densities of conjugated biomacromolecules, the most effective strategy for reducing adsorption was the substitution of these ligands. Whereas passivation incrementally increased turnover, DHLA-PEG and DHLA-SB ligands converted the mode of turnover with plasmin from scooting to hopping and the DHLA-SB enhanced the turnover rates with thrombin and trypsin by approximately an order of magnitude relative to GSH ligands. The new insights from the broad scope of this study provide an important framework for designing optimized QD conjugates as probes and sensors for enzyme activity.

摘要

酶在生物学和工业中有许多重要作用,其中蛋白酶是最重要的酶类之一。由于半导体量子点(QD)具有优越的物理和光学性质,因此它们是开发蛋白酶活性探针的有吸引力的材料;然而,蛋白酶与与其底物共轭的 QD 之间的相互作用会影响该底物的周转率。在这里,我们研究了作为多个参数函数的多价 QD-肽底物缀合物的周转率:(i)QD 上的配体涂层,包括二氢硫辛酸(DHLA)、谷胱甘肽(GSH)、DHLA-聚乙二醇(DHLA-PEG)和 DHLA-两性离子磺基甜菜碱(DHLA-SB);(ii)蛋白酶的身份,包括胰蛋白酶、凝血酶和纤溶酶;以及(iii)每个 QD 上缀合的底物和非底物生物大分子的数量。我们表明,限制蛋白酶在 QD 上的吸附对于优化共轭肽底物的周转率至关重要。蛋白酶吸附是抑制性的,并且非常强的吸附导致有限的周转率的明显“滑行”模式的活性。相比之下,较弱的吸附可能会导致周转率提高,这可能是由于“跳跃”模式的活性。推测的跳跃模式的特征是多价缀合物中所有底物的连续周转率,其限速步骤是单个缀合物之间的扩散,并且这种增强的幅度随着吸附的减少而增加。尽管可以用高浓度的共轭生物大分子对 DHLA 和 GSH 涂层的 QD 进行钝化,但减少吸附的最有效策略是取代这些配体。虽然钝化会逐渐增加周转率,但 DHLA-PEG 和 DHLA-SB 配体将与纤溶酶的转化率从滑行转变为跳跃,并且与 GSH 配体相比,DHLA-SB 使凝血酶和胰蛋白酶的周转率提高了约一个数量级。这项广泛研究的新见解为设计优化的 QD 缀合物作为酶活性的探针和传感器提供了一个重要框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验