Suppr超能文献

揭示宏观丝超收缩的分子要求。

Unraveling the Molecular Requirements for Macroscopic Silk Supercontraction.

机构信息

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam, Germany.

出版信息

ACS Nano. 2017 Oct 24;11(10):9750-9758. doi: 10.1021/acsnano.7b01532. Epub 2017 Sep 19.

Abstract

Spider dragline silk is a protein material that has evolved over millions of years to achieve finely tuned mechanical properties. A less known feature of some dragline silk fibers is that they shrink along the main axis by up to 50% when exposed to high humidity, a phenomenon called supercontraction. This contrasts the typical behavior of many other materials that swell when exposed to humidity. Molecular level details and mechanisms of the supercontraction effect are heavily debated. Here we report a molecular dynamics analysis of supercontraction in Nephila clavipes silk combined with in situ mechanical testing and Raman spectroscopy linking the reorganization of the nanostructure to the polar and charged amino acids in the sequence. We further show in our in silico approach that point mutations of these groups not only suppress the supercontraction effect, but even reverse it, while maintaining the exceptional mechanical properties of the silk material. This work has imminent impact on the design of biomimetic equivalents and recombinant silks for which supercontraction may or may not be a desirable feature. The approach applied is appropriate to explore the effect of point mutations on the overall physical properties of protein based materials.

摘要

蜘蛛牵引丝是一种蛋白质材料,经过数百万年的进化,具有精细调节的机械性能。一些牵引丝纤维的一个不太为人知的特征是,当暴露在高湿度环境中时,它们会沿着主轴收缩多达 50%,这种现象被称为超收缩。这与许多其他材料在暴露于湿度时膨胀的典型行为形成鲜明对比。超收缩效应的分子水平细节和机制存在很大争议。在这里,我们报告了对 Nephila clavipes 丝的超收缩的分子动力学分析,结合原位力学测试和拉曼光谱,将纳米结构的重组与序列中的极性和带电氨基酸联系起来。我们还在我们的计算方法中表明,这些基团的点突变不仅抑制了超收缩效应,甚至可以逆转它,同时保持丝材料的卓越机械性能。这项工作对仿生等效物和重组丝的设计具有直接影响,因为超收缩可能是也可能不是理想的特征。所应用的方法适用于探索点突变对基于蛋白质的材料整体物理性能的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验