Suppr超能文献

索斯比眼底营养不良——病理学与疾病机制综述

Sorsby fundus dystrophy - A review of pathology and disease mechanisms.

作者信息

Christensen David R G, Brown Ffion E, Cree Angela J, Ratnayaka J Arjuna, Lotery Andrew J

机构信息

Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom.

Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom.

出版信息

Exp Eye Res. 2017 Dec;165:35-46. doi: 10.1016/j.exer.2017.08.014. Epub 2017 Aug 26.

Abstract

Sorsby fundus dystrophy (SFD) is an autosomal dominant macular dystrophy with an estimated prevalence of 1 in 220,000 and an onset of disease around the 4th to 6th decade of life. Similar to age-related macular degeneration (AMD), ophthalmoscopy reveals accumulation of protein/lipid deposits under the retinal pigment epithelium (RPE), referred to as drusen, in the eyes of patients with SFD. SFD is caused by variants in the gene for tissue inhibitor of metalloproteinases-3 (TIMP3), which has been found in drusen-like deposits of SFD patients. TIMP3 is constitutively expressed by RPE cells and, in healthy eyes, resides in Bruch's membrane. Most SFD-associated TIMP3 variants involve the gain or loss of a cysteine residue. This suggests the protein aberrantly forms intermolecular disulphide bonds, resulting in the formation of TIMP3 dimers. It has been demonstrated that SFD-associated TIMP3 variants are more resistant to turnover, which is thought to be a result of dimerisation and thought to explain the accumulation of TIMP3 in drusen-like deposits at the level of Bruch's membrane. An important function of TIMP3 within the outer retina is to regulate the thickness of Bruch's membrane. TIMP3 performs this function by inhibiting the activity of matrix metalloproteinases (MMPs), which have the function of catalysing breakdown of the extracellular matrix. TIMP3 has an additional function to inhibit vascular endothelial growth factor (VEGF) signalling and thereby to inhibit angiogenesis. However, it is unclear whether SFD-associated TIMP3 variant proteins retain these functions. In this review, we discuss the current understanding of the potential mechanisms underlying development of SFD and summarise all known SFD-associated TIMP3 variants. Cell culture models provide an invaluable way to study disease and identify potential treatments. These allow a greater understanding of RPE physiology and pathophysiology, including the ability to study the blood-retinal barrier as well as other RPE functions such as phagocytosis of photoreceptor outer segments. This review describes some examples of such recent in vitro studies and how they might provide new insights into degenerative diseases like SFD. Thus far, most studies on SFD have been performed using ARPE-19 cells or other, less suitable, cell-types. Now, induced pluripotent stem cell (iPSC) technologies allow the possibility to non-invasively collect somatic cells, such as dermal fibroblast cells and reprogram those to produce iPSCs. Subsequent differentiation of iPSCs can generate patient-derived RPE cells that carry the same disease-associated variant as RPE cells in the eyes of the patient. Use of these patient-derived RPE cells in novel cell culture systems should increase our understanding of how SFD and similar macular dystrophies develop.

摘要

索斯比眼底营养不良(SFD)是一种常染色体显性黄斑营养不良,估计患病率为1/220,000,发病年龄在40至60岁左右。与年龄相关性黄斑变性(AMD)相似,眼底镜检查显示SFD患者眼中视网膜色素上皮(RPE)下有蛋白质/脂质沉积物积聚,称为玻璃膜疣。SFD是由金属蛋白酶组织抑制剂-3(TIMP3)基因的变异引起的,该变异已在SFD患者的玻璃膜疣样沉积物中发现。TIMP3由RPE细胞组成性表达,在健康眼睛中,它存在于布鲁赫膜中。大多数与SFD相关的TIMP3变异涉及半胱氨酸残基的增减。这表明该蛋白质异常形成分子间二硫键,导致TIMP3二聚体的形成。已经证明,与SFD相关的TIMP3变异对周转更具抗性,这被认为是二聚化的结果,并被认为可以解释TIMP3在布鲁赫膜水平的玻璃膜疣样沉积物中的积累。TIMP3在外视网膜中的一个重要功能是调节布鲁赫膜的厚度。TIMP3通过抑制基质金属蛋白酶(MMP)的活性来执行此功能,MMP具有催化细胞外基质分解的功能。TIMP3还有一项功能是抑制血管内皮生长因子(VEGF)信号传导,从而抑制血管生成。然而,尚不清楚与SFD相关的TIMP3变异蛋白是否保留这些功能。在这篇综述中,我们讨论了目前对SFD发病潜在机制下的理解,并总结了所有已知的与SFD相关的TIMP3变异。细胞培养模型为研究疾病和确定潜在治疗方法提供了一种非常有价值的方法。这些模型有助于更深入地了解RPE的生理和病理生理,包括研究血视网膜屏障的能力以及其他RPE功能,如光感受器外段的吞噬作用。这篇综述描述了一些近期此类体外研究的例子,以及它们如何为像SFD这样的退行性疾病提供新的见解。到目前为止,大多数关于SFD的研究都是使用ARPE-19细胞或其他不太合适的细胞类型进行的。现在,诱导多能干细胞(iPSC)技术使得无创收集体细胞(如皮肤成纤维细胞)并将其重编程以产生iPSC成为可能。iPSC的后续分化可以产生与患者眼中RPE细胞携带相同疾病相关变异的患者来源的RPE细胞。在新型细胞培养系统中使用这些患者来源的RPE细胞应该会增加我们对SFD和类似黄斑营养不良如何发展的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验