Suppr超能文献

一种受自私牧群行为启发的全局优化算法。

A global optimization algorithm inspired in the behavior of selfish herds.

作者信息

Fausto Fernando, Cuevas Erik, Valdivia Arturo, González Adrián

机构信息

Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, Mexico.

Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, Mexico.

出版信息

Biosystems. 2017 Oct;160:39-55. doi: 10.1016/j.biosystems.2017.07.010. Epub 2017 Aug 25.

Abstract

In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems.

摘要

本文提出了一种名为自私牧群优化器(SHO)的新型群体优化算法,用于解决全局优化问题。SHO基于对动物群体中个体在面临某种形式捕食风险时广泛观察到的自私牧群行为的模拟。在SHO中,个体通过两种搜索代理来模拟猎物群体和捕食者群体之间的捕食交互:自私牧群的成员(猎物)和一群饥饿的捕食者。根据其被分类为猎物还是捕食者,每个个体由一组受这种猎物 - 捕食者关系启发的独特进化算子引导。这些独特的特性使SHO能够在不改变种群大小的情况下改善探索和利用之间的平衡。为了说明所提方法的有效性和鲁棒性,将其与其他著名的进化优化方法进行比较,如粒子群优化(PSO)、人工蜂群(ABC)、萤火虫算法(FA)、差分进化(DE)、遗传算法(GA)、乌鸦搜索算法(CSA)、蜻蜓算法(DA)、蛾火优化算法(MOA)和正弦余弦算法(SCA)。比较考察了进化算法文献中常用的几个标准基准函数。实验结果表明,我们提出的方法相对于其他比较方法具有显著的性能,因此SHO被证明是解决全局优化问题的一种优秀替代方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验