Zhou Jiafeng, Zhao Bangchuan, Song Jiyue, Chen Bozhou, Ma Xiaohang, Dai Jianming, Zhu Xuebin, Sun Yuping
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
University of Science and Technology of China, Hefei, 230026, People's Republic of China.
Chemistry. 2017 Nov 16;23(64):16338-16345. doi: 10.1002/chem.201703405. Epub 2017 Oct 23.
A series of Ca-doped lithium vanadates Li Ca VO (x=0, 0.01, 0.03, and 0.05) are synthesized successfully through a simple sol-gel method. XRD patterns and energy-dispersive X-ray spectroscopy (EDS) mappings reveal that the doped Ca ions enter into the lattice successfully and are distributed uniformly throughout the Li VO (LVO) grains. XRD spectra and SEM images show that Ca doping can lead to an enlarged lattice and refined Li VO particles. A small quantity of V ions will transfer from V to V in the Ca-doped samples, as demonstrated by the X-ray photoelectron spectroscopy (XPS) analysis, which leads to an increase of an order of magnitude in the electronic conductivity. Improved rate capability and cycling stability are observed for the Ca-doped samples, and Li Ca VO exhibits the best electrochemical performance among the studied materials. The initial charge/discharge capacities at 0.1 C increase from 480/645 to 527/702 mA h g as x varies from 0 to 0.03. The charge capacity of Li Ca VO at 1 C retains 95.3 % of its initial value after 180 cycles, whereas the capacity retention is only 40 % for the pristine sample. Moreover, Li Ca VO maintains a high discharge capacity of 301.7 mA h g at a high discharge rate (4 C), whereas the corresponding value is only 95.2 mA h g for the pristine LVO sample. The enhanced cycling and rate performances are ascribed to the increased lithium ion diffusivity and electrical conductivity induced by Ca doping.
通过简单的溶胶-凝胶法成功合成了一系列钙掺杂的钒酸锂LiCaVO₄(x = 0、0.01、0.03和0.05)。X射线衍射(XRD)图谱和能量色散X射线光谱(EDS)映射表明,掺杂的钙离子成功进入晶格,并均匀分布在整个LiVO₄(LVO)晶粒中。XRD光谱和扫描电子显微镜(SEM)图像表明,钙掺杂可导致晶格扩大和LiVO₄颗粒细化。X射线光电子能谱(XPS)分析表明,在钙掺杂样品中,少量的V⁵⁺离子会转变为V⁴⁺离子,这导致电子电导率提高了一个数量级。观察到钙掺杂样品的倍率性能和循环稳定性得到改善,并且Li₀.₉₇Ca₀.₀₃VO₄在研究的材料中表现出最佳的电化学性能。当x从0变化到0.03时,0.1C下的初始充电/放电容量从480/645增加到527/702 mA h g。Li₀.₉₇Ca₀.₀₃VO₄在1C下180次循环后的充电容量保留其初始值的95.3%,而原始样品的容量保持率仅为40%。此外,Li₀.₉₇Ca₀.₀₃VO₄在高放电率(4C)下保持301.7 mA h g的高放电容量,而原始LVO样品的相应值仅为95.2 mA h g。循环和倍率性能的增强归因于钙掺杂引起的锂离子扩散率和电导率的增加。