Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France. Electronic address: mailto:
Curr Opin Struct Biol. 2017 Oct;46:140-148. doi: 10.1016/j.sbi.2017.07.007. Epub 2017 Aug 29.
Cryo electron microscopy (cryo-EM) historically has had a strong impact on the structural and mechanistic analysis of protein synthesis by the prokaryotic and eukaryotic ribosomes. Vice versa, studying ribosomes has helped moving forwards many methodological aspects in single particle cryo-EM, at the level of automated data collection and image processing including advanced techniques for particle sorting to address structural and compositional heterogeneity. Here we review some of the latest ribosome structures, where cryo-EM allowed gaining unprecedented insights based on 3D structure sorting with focused classification and refinement methods helping to reach local resolution levels better than 3Å. Such high-resolution features now enable the analysis of drug interactions with RNA and protein side-chains including even the visualization of chemical modifications of the ribosomal RNA. These advances represent a major breakthrough in structural biology and show the strong potential of cryo-EM beyond the ribosome field including for structure-based drug design.
低温电子显微镜(cryo-EM)在过去对原核生物和真核生物核糖体的蛋白质合成的结构和机制分析产生了重大影响。反之,研究核糖体也有助于在单颗粒低温电子显微镜水平上推动许多方法学方面的进展,包括自动数据收集和图像处理,包括用于解决结构和组成异质性的高级粒子分类技术。在这里,我们回顾了一些最新的核糖体结构,其中低温电子显微镜通过基于 3D 结构分类的聚焦分类和细化方法,使我们能够基于 3D 结构分类获得前所未有的见解,这些方法有助于达到优于 3Å 的局部分辨率水平。这些高分辨率特征现在使我们能够分析与 RNA 和蛋白质侧链的药物相互作用,包括甚至可视化核糖体 RNA 的化学修饰。这些进展代表了结构生物学的重大突破,展示了低温电子显微镜在核糖体领域之外的强大潜力,包括基于结构的药物设计。