文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

良性和恶性乳腺增生性病变的自动分类。

Automated Classification of Benign and Malignant Proliferative Breast Lesions.

机构信息

The Harker School, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, CA 95128, MA, USA.

Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.

出版信息

Sci Rep. 2017 Aug 29;7(1):9900. doi: 10.1038/s41598-017-10324-y.


DOI:10.1038/s41598-017-10324-y
PMID:28852119
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5575012/
Abstract

Misclassification of breast lesions can result in either cancer progression or unnecessary chemotherapy. Automated classification tools are seen as promising second opinion providers in reducing such errors. We have developed predictive algorithms that automate the categorization of breast lesions as either benign usual ductal hyperplasia (UDH) or malignant ductal carcinoma in situ (DCIS). From diagnosed breast biopsy images from two hospitals, we obtained 392 biomarkers using Dong et al.'s (2014) computational tools for nuclei identification and feature extraction. We implemented six machine learning models and enhanced them by reducing prediction variance, extracting active features, and combining multiple algorithms. We used the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for performance evaluation. Our top-performing model, a Combined model with Active Feature Extraction (CAFE) consisting of two logistic regression algorithms, obtained an AUC of 0.918 when trained on data from one hospital and tested on samples of the other, a statistically significant improvement over Dong et al.'s AUC of 0.858. Pathologists can substantially improve their diagnoses by using it as an unbiased validator. In the future, our work can also serve as a valuable methodology for differentiating between low-grade and high-grade DCIS.

摘要

乳腺病变的误诊可能导致癌症进展或不必要的化疗。自动化分类工具被视为有前途的辅助诊断工具,可以减少此类错误。我们已经开发了预测算法,可以自动将乳腺病变分为良性常见导管增生 (UDH) 或恶性导管原位癌 (DCIS)。我们从两家医院的乳腺活检图像中获得了 392 个生物标志物,使用 Dong 等人 (2014) 的核识别和特征提取计算工具。我们实施了六个机器学习模型,并通过减少预测方差、提取有效特征和组合多个算法来增强它们。我们使用接收器操作特征 (ROC) 曲线的曲线下面积 (AUC) 进行性能评估。我们表现最好的模型是一个组合模型,包含两个逻辑回归算法的主动特征提取 (CAFE),在一家医院的数据上进行训练,并在另一家医院的样本上进行测试,AUC 为 0.918,与 Dong 等人的 AUC 为 0.858 相比有显著提高。病理学家可以通过将其用作无偏验证器来大大提高他们的诊断水平。在未来,我们的工作也可以作为区分低级别和高级别 DCIS 的有价值的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2720/5575012/898acdbb1db0/41598_2017_10324_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2720/5575012/43948c50b0cd/41598_2017_10324_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2720/5575012/41b2eb44fa34/41598_2017_10324_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2720/5575012/898acdbb1db0/41598_2017_10324_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2720/5575012/43948c50b0cd/41598_2017_10324_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2720/5575012/41b2eb44fa34/41598_2017_10324_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2720/5575012/898acdbb1db0/41598_2017_10324_Fig3_HTML.jpg

相似文献

[1]
Automated Classification of Benign and Malignant Proliferative Breast Lesions.

Sci Rep. 2017-8-29

[2]
Computational pathology to discriminate benign from malignant intraductal proliferations of the breast.

PLoS One. 2014-12-9

[3]
[Fine needle aspiration cytology diagnosis of ductal lesions of breast].

Zhonghua Bing Li Xue Za Zhi. 2010-7

[4]
Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.

Med Image Anal. 2017-3-8

[5]
Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions.

Artif Intell Med. 2013-3-30

[6]
Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions.

Biomed Res Int. 2020-2-27

[7]
Benign and malignant breast lesions: diagnosis with multiparametric MR imaging.

Radiology. 2003-10

[8]
Use of border information in the classification of mammographic masses.

Phys Med Biol. 2006-1-21

[9]
A computer-aided diagnosis system for breast DCE-MRI at high spatiotemporal resolution.

Med Phys. 2016-1

[10]
[Breast calcifications with percutaneous vacuum-assisted biopsy diagnosis of malignancy or atypical hyerplasia: correlations with surgical findings].

Pathologica. 2002-12

引用本文的文献

[1]
Artificial Intelligence in Histologic Diagnosis of Ductal Carcinoma In Situ.

Mayo Clin Proc Digit Health. 2023-6-25

[2]
Performance of externally validated machine learning models based on histopathology images for the diagnosis, classification, prognosis, or treatment outcome prediction in female breast cancer: A systematic review.

J Pathol Inform. 2023-11-5

[3]
Breast histopathological image analysis using image processing techniques for diagnostic puposes: A methodological review.

J Med Syst. 2021-12-3

[4]
Artificial intelligence applied to breast pathology.

Virchows Arch. 2022-1

[5]
Improving DCIS diagnosis and predictive outcome by applying artificial intelligence.

Biochim Biophys Acta Rev Cancer. 2021-8

[6]
Intraprocedural Artificial Intelligence for Colorectal Cancer Detection and Characterisation in Endoscopy and Laparoscopy.

Surg Innov. 2021-12

[7]
Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions.

Biomed Res Int. 2020-2-27

[8]
Assessment of Machine Learning of Breast Pathology Structures for Automated Differentiation of Breast Cancer and High-Risk Proliferative Lesions.

JAMA Netw Open. 2019-8-2

[9]
Artificial intelligence in gastrointestinal endoscopy: The future is almost here.

World J Gastrointest Endosc. 2018-10-16

[10]
A METHOD FOR QUANTIFICATION OF CALPONIN EXPRESSION IN MYOEPITHELIAL CELLS IN IMMUNOHISTOCHEMICAL IMAGES OF DUCTAL CARCINOMA IN SITU.

Proc IEEE Int Symp Biomed Imaging. 2018-4

本文引用的文献

[1]
A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size.

PLoS One. 2015-3-4

[2]
Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging.

Lab Invest. 2015-4

[3]
Quantitative measurement of cancer tissue biomarkers in the lab and in the clinic.

Lab Invest. 2015-4

[4]
Computational pathology to discriminate benign from malignant intraductal proliferations of the breast.

PLoS One. 2014-12-9

[5]
A network-based classification model for deriving novel drug-disease associations and assessing their molecular actions.

PLoS One. 2014-10-30

[6]
Second opinion in breast pathology: policy, practice and perception.

J Clin Pathol. 2014-11

[7]
Using logistic regression to improve the prognostic value of microarray gene expression data sets: application to early-stage squamous cell carcinoma of the lung and triple negative breast carcinoma.

BMC Med Genomics. 2014-6-10

[8]
Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer.

PLoS One. 2014-1-31

[9]
DACH1: its role as a classifier of long term good prognosis in luminal breast cancer.

PLoS One. 2014-1-2

[10]
Classification of mitotic figures with convolutional neural networks and seeded blob features.

J Pathol Inform. 2013-5-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索