The Harker School, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, CA 95128, MA, USA.
Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
Sci Rep. 2017 Aug 29;7(1):9900. doi: 10.1038/s41598-017-10324-y.
Misclassification of breast lesions can result in either cancer progression or unnecessary chemotherapy. Automated classification tools are seen as promising second opinion providers in reducing such errors. We have developed predictive algorithms that automate the categorization of breast lesions as either benign usual ductal hyperplasia (UDH) or malignant ductal carcinoma in situ (DCIS). From diagnosed breast biopsy images from two hospitals, we obtained 392 biomarkers using Dong et al.'s (2014) computational tools for nuclei identification and feature extraction. We implemented six machine learning models and enhanced them by reducing prediction variance, extracting active features, and combining multiple algorithms. We used the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for performance evaluation. Our top-performing model, a Combined model with Active Feature Extraction (CAFE) consisting of two logistic regression algorithms, obtained an AUC of 0.918 when trained on data from one hospital and tested on samples of the other, a statistically significant improvement over Dong et al.'s AUC of 0.858. Pathologists can substantially improve their diagnoses by using it as an unbiased validator. In the future, our work can also serve as a valuable methodology for differentiating between low-grade and high-grade DCIS.
乳腺病变的误诊可能导致癌症进展或不必要的化疗。自动化分类工具被视为有前途的辅助诊断工具,可以减少此类错误。我们已经开发了预测算法,可以自动将乳腺病变分为良性常见导管增生 (UDH) 或恶性导管原位癌 (DCIS)。我们从两家医院的乳腺活检图像中获得了 392 个生物标志物,使用 Dong 等人 (2014) 的核识别和特征提取计算工具。我们实施了六个机器学习模型,并通过减少预测方差、提取有效特征和组合多个算法来增强它们。我们使用接收器操作特征 (ROC) 曲线的曲线下面积 (AUC) 进行性能评估。我们表现最好的模型是一个组合模型,包含两个逻辑回归算法的主动特征提取 (CAFE),在一家医院的数据上进行训练,并在另一家医院的样本上进行测试,AUC 为 0.918,与 Dong 等人的 AUC 为 0.858 相比有显著提高。病理学家可以通过将其用作无偏验证器来大大提高他们的诊断水平。在未来,我们的工作也可以作为区分低级别和高级别 DCIS 的有价值的方法。
Zhonghua Bing Li Xue Za Zhi. 2010-7
Phys Med Biol. 2006-1-21
Mayo Clin Proc Digit Health. 2023-6-25
Virchows Arch. 2022-1
Biochim Biophys Acta Rev Cancer. 2021-8
World J Gastrointest Endosc. 2018-10-16
Proc IEEE Int Symp Biomed Imaging. 2018-4
J Clin Pathol. 2014-11
J Pathol Inform. 2013-5-30