Suppr超能文献

脊髓性肌萎缩症中SMN的调控及对应激的反应:新范式与治疗可能性

SMN regulation in SMA and in response to stress: new paradigms and therapeutic possibilities.

作者信息

Dominguez Catherine E, Cunningham David, Chandler Dawn S

机构信息

Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.

Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.

出版信息

Hum Genet. 2017 Sep;136(9):1173-1191. doi: 10.1007/s00439-017-1835-2. Epub 2017 Aug 29.

Abstract

Low levels of the survival of motor neuron (SMN) protein cause the neurodegenerative disease spinal muscular atrophy (SMA). SMA is a pediatric disease characterized by spinal motor neuron degeneration. SMA exhibits several levels of severity ranging from early antenatal fatality to only mild muscular weakness, and disease prognosis is related directly to the amount of functional SMN protein that a patient is able to express. Current therapies are being developed to increase the production of functional SMN protein; however, understanding the effect that natural stresses have on the production and function of SMN is of critical importance to ensuring that these therapies will have the greatest possible effect for patients. Research has shown that SMN, both on the mRNA and protein level, is highly affected by cellular stress. In this review we will summarize the research that highlights the roles of SMN in the disease process and the response of SMN to various environmental stresses.

摘要

运动神经元存活蛋白(SMN)水平低下会导致神经退行性疾病脊髓性肌萎缩症(SMA)。SMA是一种儿科疾病,其特征为脊髓运动神经元退化。SMA表现出从产前早期死亡到仅轻度肌肉无力的多种严重程度,疾病预后与患者能够表达的功能性SMN蛋白量直接相关。目前正在开发增加功能性SMN蛋白产生的疗法;然而,了解自然应激对SMN产生和功能的影响对于确保这些疗法对患者产生最大可能的效果至关重要。研究表明,无论是在mRNA水平还是蛋白质水平,SMN都受到细胞应激的高度影响。在本综述中,我们将总结突出SMN在疾病过程中的作用以及SMN对各种环境应激反应的研究。

相似文献

1
SMN regulation in SMA and in response to stress: new paradigms and therapeutic possibilities.
Hum Genet. 2017 Sep;136(9):1173-1191. doi: 10.1007/s00439-017-1835-2. Epub 2017 Aug 29.
2
Heat increases full-length SMN splicing: promise for splice-augmenting therapies for SMA.
Hum Genet. 2022 Feb;141(2):239-256. doi: 10.1007/s00439-021-02408-7. Epub 2022 Jan 28.
4
HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation.
J Neurosci. 2017 Nov 29;37(48):11559-11571. doi: 10.1523/JNEUROSCI.1528-17.2017. Epub 2017 Oct 23.
5
The Biochemistry of Survival Motor Neuron Protein Is Paving the Way to Novel Therapies for Spinal Muscle Atrophy.
Biochemistry. 2020 Apr 14;59(14):1391-1397. doi: 10.1021/acs.biochem.9b01124. Epub 2020 Apr 2.
6
Spinal muscular atrophy and the antiapoptotic role of survival of motor neuron (SMN) protein.
Mol Neurobiol. 2013 Apr;47(2):821-32. doi: 10.1007/s12035-013-8399-5. Epub 2013 Jan 13.
7
Neurodevelopmental consequences of Smn depletion in a mouse model of spinal muscular atrophy.
J Neurosci Res. 2010 Jan;88(1):111-22. doi: 10.1002/jnr.22189.
8
Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy.
EBioMedicine. 2020 May;55:102750. doi: 10.1016/j.ebiom.2020.102750. Epub 2020 Apr 24.
10
Activating ATF6 in spinal muscular atrophy promotes SMN expression and motor neuron survival through the IRE1α-XBP1 pathway.
Neuropathol Appl Neurobiol. 2022 Aug;48(5):e12816. doi: 10.1111/nan.12816. Epub 2022 Mar 30.

引用本文的文献

1
NRF2 has a splicing regulatory function involving the survival of motor neuron (SMN) in non-small cell lung cancer.
Oncogene. 2023 Sep;42(37):2751-2763. doi: 10.1038/s41388-023-02799-z. Epub 2023 Aug 12.
2
Alternative Splicing Role in New Therapies of Spinal Muscular Atrophy.
Genes (Basel). 2021 Aug 28;12(9):1346. doi: 10.3390/genes12091346.
4
Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes.
Adv Neurobiol. 2018;20:31-61. doi: 10.1007/978-3-319-89689-2_2.

本文引用的文献

1
TDP-43 in the spectrum of MND-FTLD pathologies.
Mol Cell Neurosci. 2017 Sep;83:46-54. doi: 10.1016/j.mcn.2017.07.001. Epub 2017 Jul 4.
2
Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy.
PLoS Genet. 2017 Apr 20;13(4):e1006744. doi: 10.1371/journal.pgen.1006744. eCollection 2017 Apr.
3
Gender-Specific Amelioration of SMA Phenotype upon Disruption of a Deep Intronic Structure by an Oligonucleotide.
Mol Ther. 2017 Jun 7;25(6):1328-1341. doi: 10.1016/j.ymthe.2017.03.036. Epub 2017 Apr 13.
4
FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination.
J Cell Biol. 2017 Apr 3;216(4):1015-1034. doi: 10.1083/jcb.201608022. Epub 2017 Mar 15.
5
SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2347-E2356. doi: 10.1073/pnas.1613181114. Epub 2017 Mar 7.
6
Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease.
Biochim Biophys Acta Mol Basis Dis. 2017 Apr;1863(4):884-895. doi: 10.1016/j.bbadis.2016.12.022. Epub 2017 Jan 15.
7
Diverse role of survival motor neuron protein.
Biochim Biophys Acta Gene Regul Mech. 2017 Mar;1860(3):299-315. doi: 10.1016/j.bbagrm.2016.12.008. Epub 2017 Jan 15.
8
Spinal Muscular Atrophy: More than a Disease of Motor Neurons?
Curr Mol Med. 2016;16(9):779-792. doi: 10.2174/1566524016666161128113338.
9
Mechanistic insights into mammalian stress granule dynamics.
J Cell Biol. 2016 Nov 7;215(3):313-323. doi: 10.1083/jcb.201609081.
10
RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns.
Nucleic Acids Res. 2017 Jan 9;45(1):395-416. doi: 10.1093/nar/gkw731. Epub 2016 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验