Ryan John P, Green Jonathan R, Espinoza Eduardo, Hearn Alex R
Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America.
Fundación Megafauna Marina Ecuador, Whale Shark Investigation, Quito, Pichincha, Ecuador.
PLoS One. 2017 Aug 30;12(8):e0182599. doi: 10.1371/journal.pone.0182599. eCollection 2017.
Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100-350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources.
对东热带太平洋27条鲸鲨进行卫星追踪,并结合环境数据进行分析,结果表明鲸鲨优先占据热生物锋面系统。在这些系统中,热梯度是由风驱动的环流和混合作用形成的,而生物梯度则是由相关的营养物质富集和初级生产力提高所导致的。其中两个锋面系统是由上升流形成的,这是由赤道和南美洲西海岸的洋流系统中的辐散驱动的;第三个锋面系统是由中美洲附近的风切变动力学形成的。所有鲸鲨都在赤道太平洋上升流系统内的加拉帕戈斯群岛达尔文岛附近被标记。相对于跨越超过4000公里纬向范围的蜿蜒、随时间变化的热锋面,鲸鲨位置的天气图模式显示出对锋面栖息地的明显占据。在赤道北部上升流栖息地,80%的鲨鱼位置以及在东部边界上升流栖息地100%的位置都位于上升流锋面内。对赤道鲨鱼位置相对于热梯度的分析揭示了它们对环境稳定性过渡点的占据。赤道次表层标记数据显示,它们94%的时间都栖息在浅的、温暖(>22°C)的水域。所有赤道追踪的表层纬向流速仅解释了鲨鱼纬向移动速度变化的16%,这表明被动漂移不是移动模式的主要决定因素。从赤道到东部边界锋面区域的移动发生在北半球冬季,此时赤道上升流季节性减弱。在秘鲁近海,被追踪的鲨鱼在距离海岸约100 - 350公里范围内追踪上升流锋面位置。在中美洲近海,最大的被标记鲨鱼(全长12.8米)占据了巴拿马风切变外围的海洋锋面。从减弱的赤道上升流到富有生产力的东部边界栖息地的季节性移动与潜在的营养动力学一致。在热生物锋面区域持续浅居表明了物理 - 生物相互作用在集中食物资源方面的作用。