Suppr超能文献

使用加热器/夹具组件扩展全硅微芯片柱气相色谱的高温范围。

Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly.

作者信息

Ghosh Abhijit, Johnson Jacob E, Nuss Johnathan G, Stark Brittany A, Hawkins Aaron R, Tolley Luke T, Iverson Brian D, Tolley H Dennis, Lee Milton L

机构信息

Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 USA.

Department of Computer and Electrical Engineering, Brigham Young University, Provo, UT 84602 USA.

出版信息

J Chromatogr A. 2017 Sep 29;1517:134-141. doi: 10.1016/j.chroma.2017.08.036. Epub 2017 Aug 18.

Abstract

Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in GC with columns fabricated in microchips (referred to in this paper as "microchip columns"), the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non-cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a GC system utilizing microchip columns was developed that solves the latter challenge, i.e., microchip interfacing to injector and detector. A microchip compression clamp was constructed to heat the microchip (i.e., primary heater), and seal the injector and detector fused silica interface tubing to the inlet and outlet ports of the microchip channels with minimum extra-column dead volume. This clamp allowed occasional operation up to 375°C and routine operation up to 300°C. The compression clamp was constructed of a low expansion alloy, Kovar™, to minimize leaking due to thermal expansion mismatch at the interface during repeated thermal cycling, and it was tested over several months for more than one hundred injections without forming leaks. A 5.9m long microcolumn with rectangular cross section of 158μm×80μm, which approximately matches a 100μm i.d. cylindrical fused silica column, was fabricated in a silicon wafer using deep reactive ion etching (DRIE) and high temperature fusion bonding; finally, the channel was coated statically with a 1% vinyl, 5% phenyl, 94% methylpolysiloxane stationary phase. High temperature separations of C10-C40 n-alkanes and a commercial diesel sample were demonstrated using the system under both temperature programmed GC (TPGC) and thermal gradient GC (TGGC) conditions. TGGC analysis of a complex essential oil sample was also demonstrated. Addition of a secondary heater and polyimide insulation proved to be helpful in achieving the desired elution temperature without having to raise the primary heater temperature above 300°C for high boiling point compounds.

摘要

气相色谱(GC)仪器的小型化备受关注,因为它解决了当前和未来与紧凑性、便携性及现场应用相关的问题。尽管在采用微芯片制造的色谱柱(本文中称为“微芯片柱”)的气相色谱方面不断有渐进式进展的报道,但目前的性能仍远不能令人接受。与传统气相色谱相比,这种较低的性能归因于多种因素,如固定相在非圆柱形通道角落的聚集、敏感化合物在未完全去活表面的吸附、较短的柱长以及与进样器和检测器的接口不够优化。在这项工作中,开发了一种利用微芯片柱的气相色谱系统,解决了后一个挑战,即微芯片与进样器和检测器的接口问题。构建了一个微芯片压缩夹来加热微芯片(即主加热器),并将进样器和检测器的熔融石英接口管与微芯片通道的入口和出口端口密封,使柱外死体积最小。这个夹子允许偶尔在高达375°C的温度下运行,常规运行温度可达300°C。压缩夹由低膨胀合金科瓦合金(Kovar™)制成,以尽量减少在反复热循环过程中由于界面处热膨胀不匹配而导致的泄漏,并且经过数月超过一百次进样的测试,未出现泄漏。使用深反应离子刻蚀(DRIE)和高温熔融键合技术在硅片中制造了一根5.9米长、矩形横截面为158μm×80μm的微柱,其大致相当于一根内径为100μm的圆柱形熔融石英柱;最后,在通道中静态涂覆了1%乙烯基、5%苯基、94%甲基聚硅氧烷固定相。在程序升温气相色谱(TPGC)和热梯度气相色谱(TGGC)条件下,使用该系统对C10 - C40正构烷烃和一个商业柴油样品进行了高温分离。还展示了对一个复杂香精油样品的TGGC分析。事实证明,添加一个辅助加热器和聚酰亚胺绝缘材料有助于在不将主加热器温度提高到300°C以上的情况下,实现高沸点化合物所需的洗脱温度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验