Neuroscience Center, University of Helsinki, Helsinki, Finland.
Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
Neurochem Res. 2019 Mar;44(3):562-571. doi: 10.1007/s11064-017-2392-8. Epub 2017 Aug 31.
During the course of development, molecular mechanisms underlying activity-dependent synaptic plasticity change considerably. At immature CA3-CA1 synapses in the hippocampus, PKA-driven synaptic insertion of GluA4 AMPA receptors is the predominant mechanism for synaptic strengthening. However, the physiological significance of the developmentally restricted GluA4-dependent plasticity mechanisms is poorly understood. Here we have used microelectrode array (MEA) recordings in GluA4 deficient slice cultures to study the role of GluA4 in early development of the hippocampal circuit function. We find that during the first week in culture (DIV2-6) when GluA4 expression is restricted to pyramidal neurons, loss of GluA4 has no effect on the overall excitability of the immature network, but significantly impairs synchronization of the CA3 and CA1 neuronal populations. In the absence of GluA4, the temporal correlation of the population spiking activity between CA3-CA1 neurons was significantly lower as compared to wild-types at DIV6. Our data show that synapse-level defects in transmission and plasticity mechanisms are efficiently compensated for to normalize population firing rate at the immature hippocampal network. However, lack of the plasticity mechanisms typical for the immature synapses may perturb functional coupling between neuronal sub-populations, a defect frequently implicated in the context of developmentally originating neuropsychiatric disorders.
在发育过程中,活动依赖性突触可塑性的分子机制发生了很大变化。在海马体不成熟的 CA3-CA1 突触中,PKA 驱动的 GluA4 AMPA 受体突触插入是突触增强的主要机制。然而,发育受限的 GluA4 依赖性可塑性机制的生理意义还知之甚少。在这里,我们使用微电极阵列 (MEA) 在 GluA4 缺失的切片培养物中的记录来研究 GluA4 在海马体回路功能早期发育中的作用。我们发现,在培养的第一周(DIV2-6),当 GluA4 表达仅限于锥体神经元时,GluA4 的缺失对未成熟网络的整体兴奋性没有影响,但显著损害了 CA3 和 CA1 神经元群体的同步性。在没有 GluA4 的情况下,与野生型相比,在 DIV6 时 CA3-CA1 神经元之间群体尖峰活动的时间相关性明显降低。我们的数据表明,在未成熟的海马体网络中,突触水平的传输和可塑性机制缺陷可以有效地补偿,使群体发放率正常化。然而,缺乏典型的未成熟突触的可塑性机制可能会扰乱神经元亚群之间的功能耦合,这是发育起源的神经精神障碍中经常涉及的缺陷。