Suppr超能文献

由CMP-唾液酸转运蛋白SLC35A1新突变引起的脑病。

Encephalopathy caused by novel mutations in the CMP-sialic acid transporter, SLC35A1.

作者信息

Ng Bobby G, Asteggiano Carla G, Kircher Martin, Buckingham Kati J, Raymond Kimiyo, Nickerson Deborah A, Shendure Jay, Bamshad Michael J, Ensslen Matthias, Freeze Hudson H

机构信息

Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.

CONICET - Centro de Estudio de las Metabolopatías Congénitas, Universidad Nacional de Córdoba, Facultad de Medicina, Universidad Católica de Córdoba, Córdoba, Argentina.

出版信息

Am J Med Genet A. 2017 Nov;173(11):2906-2911. doi: 10.1002/ajmg.a.38412. Epub 2017 Aug 29.

Abstract

Transport of activated nucleotide-sugars into the Golgi is critical for proper glycosylation and mutations in these transporters cause a group of rare genetic disorders termed congenital disorders of glycosylation. We performed exome sequencing on an individual with a profound neurological presentation and identified rare compound heterozygous mutations, p.Thr156Arg and p.Glu196Lys, in the CMP-sialic acid transporter, SLC35A1. Patient primary fibroblasts and serum showed a considerable decrease in the amount of N- and O-glycans terminating in sialic acid. Direct measurement of CMP-sialic acid transport into the Golgi showed a substantial decrease in overall rate of transport. Here we report the identification of the third patient with CMP-sialic acid transporter deficiency, who presented with severe neurological phenotype, but without hematological abnormalities.

摘要

活化的核苷酸糖转运至高尔基体对于正确的糖基化至关重要,这些转运体的突变会导致一组罕见的遗传性疾病,称为先天性糖基化障碍。我们对一名有严重神经学表现的个体进行了外显子组测序,在CMP-唾液酸转运体SLC35A1中鉴定出罕见的复合杂合突变p.Thr156Arg和p.Glu196Lys。患者原代成纤维细胞和血清中,以唾液酸为末端的N-聚糖和O-聚糖数量显著减少。对CMP-唾液酸转运至高尔基体的直接测量显示,整体转运速率大幅下降。在此我们报告了第三例CMP-唾液酸转运体缺乏症患者,该患者表现出严重的神经学表型,但无血液学异常。

相似文献

1
Encephalopathy caused by novel mutations in the CMP-sialic acid transporter, SLC35A1.
Am J Med Genet A. 2017 Nov;173(11):2906-2911. doi: 10.1002/ajmg.a.38412. Epub 2017 Aug 29.
2
A functional splice variant of the human Golgi CMP-sialic acid transporter.
Glycoconj J. 2016 Dec;33(6):897-906. doi: 10.1007/s10719-016-9697-8. Epub 2016 Jul 7.
4
Intellectual disability and bleeding diathesis due to deficient CMP--sialic acid transport.
Neurology. 2013 Aug 13;81(7):681-7. doi: 10.1212/WNL.0b013e3182a08f53. Epub 2013 Jul 19.
8
A three-pocket model for substrate coordination and selectivity by the nucleotide sugar transporters SLC35A1 and SLC35A2.
J Biol Chem. 2021 Sep;297(3):101069. doi: 10.1016/j.jbc.2021.101069. Epub 2021 Aug 10.

引用本文的文献

2
Genome-wide CRISPR/Cas9 screen identifies host factors for Newcastle disease virus replication.
Poult Sci. 2025 Jun 10;104(9):105421. doi: 10.1016/j.psj.2025.105421.
5
The known unknowns of apolipoprotein glycosylation in health and disease.
iScience. 2022 Aug 28;25(9):105031. doi: 10.1016/j.isci.2022.105031. eCollection 2022 Sep 16.
6
Delivery of Nucleotide Sugars to the Mammalian Golgi: A Very Well (un)Explained Story.
Int J Mol Sci. 2022 Aug 3;23(15):8648. doi: 10.3390/ijms23158648.
8
NANS-CDG: Delineation of the Genetic, Biochemical, and Clinical Spectrum.
Front Neurol. 2021 Jun 7;12:668640. doi: 10.3389/fneur.2021.668640. eCollection 2021.
9
The promiscuous binding pocket of SLC35A1 ensures redundant transport of CDP-ribitol to the Golgi.
J Biol Chem. 2021 Jan-Jun;296:100789. doi: 10.1016/j.jbc.2021.100789. Epub 2021 May 18.
10
Free sialic acid storage disorder: Progress and promise.
Neurosci Lett. 2021 Jun 11;755:135896. doi: 10.1016/j.neulet.2021.135896. Epub 2021 Apr 20.

本文引用的文献

1
Activation of a cryptic splice site in the mitochondrial elongation factor GFM1 causes combined OXPHOS deficiency.
Mitochondrion. 2017 May;34:84-90. doi: 10.1016/j.mito.2017.02.004. Epub 2017 Feb 12.
2
A functional splice variant of the human Golgi CMP-sialic acid transporter.
Glycoconj J. 2016 Dec;33(6):897-906. doi: 10.1007/s10719-016-9697-8. Epub 2016 Jul 7.
3
Mass spectrometry of transferrin and apolipoprotein C-III for diagnosis and screening of congenital disorder of glycosylation.
Glycoconj J. 2016 Jun;33(3):297-307. doi: 10.1007/s10719-015-9636-0. Epub 2016 Feb 13.
4
Enterovirus D68 receptor requirements unveiled by haploid genetics.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1399-404. doi: 10.1073/pnas.1524498113. Epub 2016 Jan 19.
5
Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction.
Trends Biochem Sci. 2015 Jul;40(7):377-84. doi: 10.1016/j.tibs.2015.03.002. Epub 2015 Mar 31.
6
Neurological aspects of human glycosylation disorders.
Annu Rev Neurosci. 2015 Jul 8;38:105-25. doi: 10.1146/annurev-neuro-071714-034019. Epub 2015 Apr 2.
8
Genetic defects in dolichol metabolism.
J Inherit Metab Dis. 2015 Jan;38(1):157-69. doi: 10.1007/s10545-014-9760-1. Epub 2014 Oct 1.
9
Congenital disorders of glycosylation: new defects and still counting.
J Inherit Metab Dis. 2014 Jul;37(4):609-17. doi: 10.1007/s10545-014-9720-9. Epub 2014 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验