Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, University of Texas at Austin, Austin, Texas, USA.
Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, University of Texas at Austin, Austin, Texas, USA.
J Biol Chem. 2021 Sep;297(3):101069. doi: 10.1016/j.jbc.2021.101069. Epub 2021 Aug 10.
The CMP-sialic acid transporter SLC35A1 and UDP-galactose transporter SLC35A2 are two well-characterized nucleotide sugar transporters with distinctive substrate specificities. Mutations in either induce congenital disorders of glycosylation. Despite the biomedical relevance, mechanisms of substrate specificity are unclear. To address this critical issue, we utilized a structure-guided mutagenesis strategy and assayed a series of SLC35A2 and SLC35A1 mutants using a rescue approach. Our results suggest that three pockets in the central cavity of each transporter provide substrate specificity. The pockets comprise (1) nucleobase (residues E52, K55, and Y214 of SLC35A1; E75, K78, N235, and G239 of SLC35A2); (2) middle (residues Q101, N102, and T260 of SLC35A1; Q125, N126, Q129, Y130, and Q278 of SLC35A2); and (3) sugar (residues K124, T128, S188, and K272 of SLC35A1; K148, T152, S213, and K297 of SLC35A2) pockets. Within these pockets, two components appear to be especially critical for substrate specificity. Y214 (for SLC35A1) and G239 (for SLC35A2) in the nucleobase pocket appear to discriminate cytosine from uracil. Furthermore, Q129 and Q278 of SLC35A2 in the middle pocket appear to interact specifically with the β-phosphate of UDP while the corresponding A105 and A253 residues in SLC35A1 do not interact with CMP, which lacks a β-phosphate. Overall, our findings contribute to a molecular understanding of substrate specificity and coordination in SLC35A1 and SLC35A2 and have important implications for the understanding and treatment of diseases associated with mutations or dysregulations of these two transporters.
CMP-唾液酸转运蛋白 SLC35A1 和 UDP-半乳糖转运蛋白 SLC35A2 是两种具有独特底物特异性的经过充分研究的核苷酸糖转运蛋白。这两种蛋白的突变都会导致先天性糖基化障碍。尽管具有重要的生物医学意义,但底物特异性的机制尚不清楚。为了解决这一关键问题,我们利用结构指导的突变策略,并利用拯救方法对一系列 SLC35A2 和 SLC35A1 突变体进行了检测。我们的结果表明,每个转运蛋白的中央腔中的三个口袋提供了底物特异性。这些口袋包括:(1)碱基(SLC35A1 的 E52、K55 和 Y214;SLC35A2 的 E75、K78、N235 和 G239);(2)中间口袋(SLC35A1 的 Q101、N102 和 T260;SLC35A2 的 Q125、N126、Q129、Y130 和 Q278);(3)糖口袋(SLC35A1 的 K124、T128、S188 和 K272;SLC35A2 的 K148、T152、S213 和 K297)。在这些口袋中,有两个成分似乎对底物特异性特别重要。碱基口袋中的 Y214(对于 SLC35A1)和 G239(对于 SLC35A2)似乎可以区分胞嘧啶和尿嘧啶。此外,SLC35A2 的中间口袋中的 Q129 和 Q278 似乎与 UDP 的β-磷酸基团特异性相互作用,而 SLC35A1 中的相应 A105 和 A253 残基则不与缺乏β-磷酸基团的 CMP 相互作用。总的来说,我们的发现有助于深入了解 SLC35A1 和 SLC35A2 中底物特异性和协调的分子机制,并对理解和治疗与这两种转运蛋白的突变或失调相关的疾病具有重要意义。