Suppr超能文献

铂和镍掺杂石墨烯上一氧化碳的催化氢化:一项比较性密度泛函理论研究。

Catalytic hydrogenation of CO over Pt- and Ni-doped graphene: A comparative DFT study.

作者信息

Esrafili Mehdi D, Sharifi Fahimeh, Dinparast Leila

机构信息

Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran.

Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran.

出版信息

J Mol Graph Model. 2017 Oct;77:143-152. doi: 10.1016/j.jmgm.2017.08.016. Epub 2017 Aug 31.

Abstract

Today, the global greenhouse effect of carbon dioxide (CO) is a serious environmental problem. Therefore, developing efficient methods for CO capturing and conversion to valuable chemicals is a great challenge. The aim of the present study is to investigate the catalytic activity of Pt- or Ni-doped graphene for the hydrogenation of CO by a hydrogen molecule. To gain a deeper insight into the catalytic mechanism of this reaction, the reliable density functional theory calculations are performed. The adsorption energies, geometric parameters, reaction barriers, and thermodynamic properties are calculated using the M06-2X density functional. Two reaction mechanisms are proposed for the hydrogenation of CO. In the bimolecular mechanism, the reaction proceeds in two steps, initiating by the co-adsorption of CO and H molecules over the surface, followed by the formation of a OCOH intermediate by the transfer of H atom of H toward O atom of CO. In the next step, formic acid is produced as a favorable product with the formation of CH bond. In our proposed termolecular mechanism, however, H molecule is directly activated by the two pre-adsorbed CO molecules. The predicted activation energy for the formation of the OCOH intermediate in the bimolecular mechanism is 20.8 and 47.9kcalmol over Pt- and Ni-doped graphene, respectively. On the contrary, the formation of the first formic acid in the termolecular mechanism is found as the rate-determining step over these surfaces, with an activation energy of 28.8 and 45.5kcal/mol. Our findings demonstrate that compared to the Ni-doped graphene, the Pt-doped surface has a relatively higher catalytic activity towards the CO reduction. These theoretical results could be useful in practical applications for removal and transformation of CO to value-added chemical products.

摘要

如今,二氧化碳(CO)的全球温室效应是一个严重的环境问题。因此,开发高效的CO捕获方法并将其转化为有价值的化学品是一项巨大的挑战。本研究的目的是研究Pt或Ni掺杂的石墨烯对氢分子氢化CO的催化活性。为了更深入地了解该反应的催化机理,进行了可靠的密度泛函理论计算。使用M06-2X密度泛函计算吸附能、几何参数、反应势垒和热力学性质。提出了两种CO氢化反应机理。在双分子机理中,反应分两步进行,首先是CO和H分子在表面上共吸附,然后是H原子向CO的O原子转移形成OCOH中间体。在下一步中,通过形成CH键生成甲酸作为有利产物。然而,在我们提出的三分子机理中,H分子被两个预先吸附的CO分子直接激活。在双分子机理中,在Pt和Ni掺杂的石墨烯上形成OCOH中间体的预测活化能分别为20.8和47.9 kcal/mol。相反,在这些表面上,三分子机理中第一个甲酸的形成是速率决定步骤,活化能为28.8和45.5 kcal/mol。我们的研究结果表明,与Ni掺杂的石墨烯相比,Pt掺杂的表面对CO还原具有相对较高的催化活性。这些理论结果可能在将CO去除和转化为增值化学产品的实际应用中有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验