Institute of Functional Interfaces, IFG, Karlsruhe Institute of Technology, KIT, 76344, Eggenstein-Leopoldshafen, Germany.
Institute of Catalysis Research and Technology, IKFT, Karlsruhe Institute of Technology, KIT, 76344, Eggenstein-Leopoldshafen, Germany.
Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14301-14305. doi: 10.1002/anie.201707965. Epub 2017 Oct 4.
The photoreactivity of ceria, a photochemically inert oxide with a large band gap, can be increased to competitive values by introducing defects. This previously unexplained phenomenon has been investigated by monitoring the UV-induced decomposition of N O on well-defined single crystals of ceria by using infrared reflection-absorption spectroscopy (IRRAS). The IRRAS data, in conjunction with theory, provide direct evidence that reducing the ceria(110) surface yields high photoreactivity. No such effects are seen on the (111) surface. The low-temperature photodecomposition of N O occurs at surface O vacancies on the (110) surface, where the electron-rich cerium cations with a significantly lowered coordination number cause a local lowering of the huge band gap (ca. 6 eV). The quantum efficiency of strongly reduced ceria(110) surfaces in the photodecomposition of N O amounts to 0.03 %, and is thus comparable to that reported for the photooxidation of CO on rutile TiO (110).
通过引入缺陷,可以将具有大带隙的光惰性氧化物氧化铈的光反应性提高到竞争水平。通过使用红外反射吸收光谱(IRRAS)监测在氧化铈单晶上定义良好的单晶体上的 N O 的 UV 诱导分解,对这一以前未解释的现象进行了研究。IRRAS 数据与理论相结合,提供了直接的证据,表明还原氧化铈(110)表面可产生高的光反应性。在(111)表面上看不到这种效果。在(110)表面上的 O 空位上发生低温 N O 的光分解,其中电子富铈阳离子的配位数明显降低,导致巨大的带隙(约 6 eV)局部降低。在 N O 的光分解中,强烈还原的氧化铈(110)表面的量子效率达到 0.03%,与报道的锐钛矿 TiO(110)上 CO 的光氧化相当。