Suppr超能文献

使用 Raspberry Pi 在小鼠渐缩束测试中实现自动化触摸感应。

Automated touch sensing in the mouse tapered beam test using Raspberry Pi.

机构信息

Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Master Program Neuroscience and Cognition, Graduate School of Life Sciences, Utrecht University, The Netherlands.

Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.

出版信息

J Neurosci Methods. 2017 Nov 1;291:221-226. doi: 10.1016/j.jneumeth.2017.08.030. Epub 2017 Aug 30.

Abstract

BACKGROUND

Rodent models of neurological disease such as stroke are often characterized by motor deficits. One of the tests that are used to assess these motor deficits is the tapered beam test, which provides a sensitive measure of bilateral motor function based on foot faults (slips) made by a rodent traversing a gradually narrowing beam. However, manual frame-by-frame scoring of video recordings is necessary to obtain test results, which is time-consuming and prone to human rater bias.

NEW METHOD

We present a cost-effective method for automated touch sensing in the tapered beam test. Capacitive touch sensors detect foot faults onto the beam through a layer of conductive paint, and results are processed and stored on a Raspberry Pi computer.

RESULTS

Automated touch sensing using this method achieved high sensitivity (96.2%) as compared to 'gold standard' manual video scoring. Furthermore, it provided a reliable measure of lateralized motor deficits in mice with unilateral photothrombotic stroke: results indicated an increased number of contralesional foot faults for up to 6days after ischemia.

COMPARISON WITH EXISTING METHOD

The automated adaptation of the tapered beam test produces results immediately after each trial, without the need for labor-intensive post-hoc video scoring. It also increases objectivity of the data as it requires less experimenter involvement during analysis.

CONCLUSIONS

Automated touch sensing may provide a useful adaptation to the existing tapered beam test in mice, while the simplicity of the hardware lends itself to potential further adaptations to related behavioral tests.

摘要

背景

啮齿动物模型的神经疾病,如中风,通常表现为运动缺陷。用于评估这些运动缺陷的测试之一是锥形束测试,该测试基于啮齿动物穿过逐渐变窄的梁时发生的足部故障(滑倒),提供了对双侧运动功能的敏感测量。然而,获得测试结果需要手动逐帧记录视频,这既耗时又容易受到人类评分者的偏见影响。

新方法

我们提出了一种在锥形束测试中进行自动触摸感应的经济有效的方法。电容式触摸传感器通过一层导电涂料检测到梁上的足部故障,结果在 Raspberry Pi 计算机上进行处理和存储。

结果

与“黄金标准”手动视频评分相比,这种方法的自动触摸感应具有很高的灵敏度(96.2%)。此外,它为单侧光血栓形成中风小鼠的偏侧运动缺陷提供了可靠的测量:结果表明,在缺血后长达 6 天内,对侧的足部故障数量增加。

与现有方法的比较

锥形束测试的自动适应在每次试验后立即产生结果,无需进行劳动密集型的事后视频评分。由于在分析过程中需要较少的实验者参与,因此它还提高了数据的客观性。

结论

自动触摸感应可能为现有的小鼠锥形束测试提供有用的适应,而硬件的简单性使其有可能进一步适应相关的行为测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验