Fitak Robert R, Johnsen Sönke
Department of Biology, Duke University, Durham, NC 27708, USA
Department of Biology, Duke University, Durham, NC 27708, USA.
J Exp Biol. 2017 Nov 1;220(Pt 21):3878-3882. doi: 10.1242/jeb.167056. Epub 2017 Aug 31.
In studies of animal orientation, data are often represented as directions that can be analyzed using circular statistical methods. Although several circular statistical tests exist to detect the presence of a mean direction, likelihood-based approaches may offer advantages in hypothesis testing - especially when data are multimodal. Unfortunately, likelihood-based inference in animal orientation remains rare. Here, we discuss some of the assumptions and limitations of common circular tests and report a new R package called CircMLE to implement the maximum likelihood analysis of circular data. We illustrate the use of this package on both simulated datasets and an empirical example dataset in Chinook salmon (). Our software provides a convenient interface that facilitates the use of model-based approaches in animal orientation studies.
在动物定向研究中,数据通常表示为方向,可使用圆形统计方法进行分析。尽管存在多种圆形统计检验来检测平均方向的存在,但基于似然性的方法在假设检验中可能具有优势——尤其是当数据是多峰的时候。不幸的是,基于似然性的动物定向推断仍然很少见。在这里,我们讨论了常见圆形检验的一些假设和局限性,并报告了一个名为CircMLE的新R包,用于实现圆形数据的最大似然分析。我们在模拟数据集和奇努克鲑鱼的一个实证示例数据集上说明了该包的使用。我们的软件提供了一个方便的界面,便于在动物定向研究中使用基于模型的方法。