Suppr超能文献

季节对花瓣数量的调控

Seasonal Regulation of Petal Number.

机构信息

Plant Sciences Department, University of Oxford, Oxford OX1 3RB, United Kingdom.

Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany.

出版信息

Plant Physiol. 2017 Oct;175(2):886-903. doi: 10.1104/pp.17.00563. Epub 2017 Aug 31.

Abstract

Four petals characterize the flowers of most species in the Brassicaceae family, and this phenotype is generally robust to genetic and environmental variation. A variable petal number distinguishes the flowers of from those of its close relative Arabidopsis (), and allelic variation at many loci contribute to this trait. However, it is less clear whether petal number varies in response to seasonal changes in environment. To address this question, we assessed whether petal number responds to a suite of environmental and endogenous cues that regulate flowering time in We found that petal number showed seasonal variation in , such that spring flowering plants developed more petals than those flowering in summer. Conditions associated with spring flowering, including cool ambient temperature, short photoperiod, and vernalization, all increased petal number in Cool temperature caused the strongest increase in petal number and lengthened the time interval over which floral meristems matured. We performed live imaging of early flower development and showed that floral buds developed more slowly at 15°C versus 20°C. This extended phase of floral meristem formation, coupled with slower growth of sepals at 15°C, produced larger intersepal regions with more space available for petal initiation. In summary, the growth and maturation of floral buds is associated with variable petal number in and responds to seasonal changes in ambient temperature.

摘要

四瓣是十字花科大多数物种花朵的特征,这种表型通常对遗传和环境变化具有很强的稳健性。 的花朵和其近亲拟南芥(Arabidopsis)的花朵在花瓣数量上存在差异,许多基因座的等位基因变异对此性状有贡献。然而, 花瓣数量是否会响应环境季节性变化而变化尚不清楚。为了解决这个问题,我们评估了花瓣数量是否响应调节 开花时间的一系列环境和内源性信号。我们发现, 在 中花瓣数量存在季节性变化,即春季开花的植株比夏季开花的植株具有更多的花瓣。与春季开花相关的条件,包括凉爽的环境温度、短日照和春化作用,都增加了 的花瓣数量。凉爽的温度导致花瓣数量增加最多,并延长了花分生组织成熟的时间间隔。我们进行了早期花发育的实时成像,并表明与 20°C 相比,15°C 下的花芽发育较慢。这种花分生组织形成的延长阶段,加上 15°C 下萼片生长较慢,产生了具有更多空间用于花瓣起始的更大的隔区间区域。总之,花芽的生长和成熟与 中可变的花瓣数量有关,并响应环境温度的季节性变化。

相似文献

1
Seasonal Regulation of Petal Number.
Plant Physiol. 2017 Oct;175(2):886-903. doi: 10.1104/pp.17.00563. Epub 2017 Aug 31.
2
Stochastic variation in Cardamine hirsuta petal number.
Ann Bot. 2016 Apr;117(5):881-7. doi: 10.1093/aob/mcv131. Epub 2015 Sep 7.
3
The role of in petal number robustness.
Elife. 2018 Oct 18;7:e39399. doi: 10.7554/eLife.39399.
4
Physical interaction of floral organs controls petal morphogenesis in Arabidopsis.
Plant Physiol. 2013 Mar;161(3):1242-50. doi: 10.1104/pp.112.212084. Epub 2013 Jan 11.
5
The genetic architecture of petal number in Cardamine hirsuta.
New Phytol. 2016 Jan;209(1):395-406. doi: 10.1111/nph.13586. Epub 2015 Aug 13.
7
Seasonal and developmental timing of flowering.
Plant J. 2010 Mar;61(6):1001-13. doi: 10.1111/j.1365-313X.2010.04148.x.
8
Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
Plant Signal Behav. 2015;10(11):e1089373. doi: 10.1080/15592324.2015.1089373.
10
A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis.
Genes Dev. 2006 Dec 1;20(23):3244-8. doi: 10.1101/gad.1493306. Epub 2006 Nov 17.

引用本文的文献

1
Antagonizing regulatory elements of a conserved flowering gene mediate developmental robustness.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2421990122. doi: 10.1073/pnas.2421990122. Epub 2025 Feb 18.
2
Molecular and genetic regulation of petal number variation.
J Exp Bot. 2024 Jun 7;75(11):3233-3247. doi: 10.1093/jxb/erae136.
3
Temperature-mediated flower size plasticity in Arabidopsis.
iScience. 2022 Oct 21;25(11):105411. doi: 10.1016/j.isci.2022.105411. eCollection 2022 Nov 18.
5
Developmental stochasticity and variation in floral phyllotaxis.
J Plant Res. 2021 May;134(3):403-416. doi: 10.1007/s10265-021-01283-7. Epub 2021 Apr 5.
7
Floral organ development goes live.
J Exp Bot. 2020 May 9;71(9):2472-2478. doi: 10.1093/jxb/eraa038.
8
A phylogenetically conserved APETALA2/ETHYLENE RESPONSE FACTOR, ERF12, regulates Arabidopsis floral development.
Plant Mol Biol. 2020 Jan;102(1-2):39-54. doi: 10.1007/s11103-019-00936-5. Epub 2019 Dec 5.
9
The role of in petal number robustness.
Elife. 2018 Oct 18;7:e39399. doi: 10.7554/eLife.39399.

本文引用的文献

1
The Cardamine hirsuta genome offers insight into the evolution of morphological diversity.
Nat Plants. 2016 Oct 31;2(11):16167. doi: 10.1038/nplants.2016.167.
2
Phytochrome B integrates light and temperature signals in Arabidopsis.
Science. 2016 Nov 18;354(6314):897-900. doi: 10.1126/science.aaf5656. Epub 2016 Oct 27.
3
Phytochromes function as thermosensors in Arabidopsis.
Science. 2016 Nov 18;354(6314):886-889. doi: 10.1126/science.aaf6005. Epub 2016 Oct 27.
4
Morphomechanical Innovation Drives Explosive Seed Dispersal.
Cell. 2016 Jun 30;166(1):222-33. doi: 10.1016/j.cell.2016.05.002. Epub 2016 Jun 2.
7
Gene networks controlling petal organogenesis.
J Exp Bot. 2016 Jan;67(1):61-8. doi: 10.1093/jxb/erv444. Epub 2015 Oct 1.
8
Stochastic variation in Cardamine hirsuta petal number.
Ann Bot. 2016 Apr;117(5):881-7. doi: 10.1093/aob/mcv131. Epub 2015 Sep 7.
9
The genetic architecture of petal number in Cardamine hirsuta.
New Phytol. 2016 Jan;209(1):395-406. doi: 10.1111/nph.13586. Epub 2015 Aug 13.
10
Heterochrony underpins natural variation in Cardamine hirsuta leaf form.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10539-44. doi: 10.1073/pnas.1419791112. Epub 2015 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验