Suppr超能文献

碎米荠花瓣数量的随机变异。

Stochastic variation in Cardamine hirsuta petal number.

作者信息

Monniaux Marie, Pieper Bjorn, Hay Angela

机构信息

Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany.

Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany

出版信息

Ann Bot. 2016 Apr;117(5):881-7. doi: 10.1093/aob/mcv131. Epub 2015 Sep 7.

Abstract

BACKGROUND AND AIMS

Floral development is remarkably robust in terms of the identity and number of floral organs in each whorl, whereas vegetative development can be quite plastic. This canalization of flower development prevents the phenotypic expression of cryptic genetic variation, even in fluctuating environments. A cruciform perianth with four petals is a hallmark of the Brassicaceae family, typified in the model species Arabidopsis thaliana However, variable petal loss is found in Cardamine hirsuta, a genetically tractable relative of A. thaliana Cardamine hirsuta petal number varies in response to stochastic, genetic and environmental perturbations, which makes it an interesting model to study mechanisms of decanalization and the expression of cryptic variation.

METHODS

Multitrait quantitative trait locus (QTL) analysis in recombinant inbred lines (RILs) was used to identify whether the stochastic variation found in C. hirsuta petal number had a genetic basis.

KEY RESULTS

Stochastic variation (standard error of the average petal number) was found to be a heritable phenotype, and four QTL that influenced this trait were identified. The sensitivity to detect these QTL effects was increased by accounting for the effect of ageing on petal number variation. All QTL had significant effects on both average petal number and its standard error, indicating that these two traits share a common genetic basis. However, for some QTL, a degree of independence was found between the age of the flowers where allelic effects were significant for each trait.

CONCLUSIONS

Stochastic variation in C. hirsuta petal number has a genetic basis, and common QTL influence both average petal number and its standard error. Allelic variation at these QTL can, therefore, modify petal number in an age-specific manner via effects on the phenotypic mean and stochastic variation. These results are discussed in the context of trait evolution via a loss of robustness.

摘要

背景与目的

花的发育在每个轮次中花器官的特征和数量方面具有显著的稳健性,而营养发育则可能相当具有可塑性。花发育的这种定向化过程可防止隐性遗传变异的表型表达,即使在波动的环境中也是如此。具有四片花瓣的十字形花被是十字花科的一个标志,在模式植物拟南芥中很典型。然而,在碎米荠中发现了可变的花瓣缺失现象,碎米荠是拟南芥的一个遗传上易于处理的近缘种。碎米荠的花瓣数量会因随机、遗传和环境扰动而变化,这使其成为研究去定向化机制和隐性变异表达的有趣模型。

方法

利用重组自交系(RIL)中的多性状数量性状位点(QTL)分析来确定碎米荠花瓣数量中发现的随机变异是否具有遗传基础。

关键结果

发现随机变异(平均花瓣数的标准误差)是一种可遗传的表型,并鉴定出了影响该性状的四个QTL。通过考虑衰老对花瓣数量变异的影响,检测这些QTL效应的灵敏度得到了提高。所有QTL对平均花瓣数及其标准误差均有显著影响,表明这两个性状具有共同的遗传基础。然而,对于某些QTL,在每个性状等位基因效应显著的花的年龄之间发现了一定程度的独立性。

结论

碎米荠花瓣数量的随机变异具有遗传基础,共同的QTL影响平均花瓣数及其标准误差。因此,这些QTL处的等位基因变异可通过对表型均值和随机变异的影响,以年龄特异性方式改变花瓣数量。这些结果在通过丧失稳健性进行性状进化的背景下进行了讨论。

相似文献

1
Stochastic variation in Cardamine hirsuta petal number.
Ann Bot. 2016 Apr;117(5):881-7. doi: 10.1093/aob/mcv131. Epub 2015 Sep 7.
2
The genetic architecture of petal number in Cardamine hirsuta.
New Phytol. 2016 Jan;209(1):395-406. doi: 10.1111/nph.13586. Epub 2015 Aug 13.
3
The role of in petal number robustness.
Elife. 2018 Oct 18;7:e39399. doi: 10.7554/eLife.39399.
4
Seasonal Regulation of Petal Number.
Plant Physiol. 2017 Oct;175(2):886-903. doi: 10.1104/pp.17.00563. Epub 2017 Aug 31.
5
Heterochrony underpins natural variation in Cardamine hirsuta leaf form.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10539-44. doi: 10.1073/pnas.1419791112. Epub 2015 Aug 4.
6
Cardamine hirsuta: a versatile genetic system for comparative studies.
Plant J. 2014 Apr;78(1):1-15. doi: 10.1111/tpj.12447. Epub 2014 Mar 18.
7
The genetic control of leaf and petal allometric variations in Arabidopsis thaliana.
BMC Plant Biol. 2020 Dec 7;20(1):547. doi: 10.1186/s12870-020-02758-w.
10
Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta.
New Phytol. 2017 Oct;216(2):549-561. doi: 10.1111/nph.14419. Epub 2017 Jan 18.

引用本文的文献

1
Molecular and genetic regulation of petal number variation.
J Exp Bot. 2024 Jun 7;75(11):3233-3247. doi: 10.1093/jxb/erae136.
2
Developmental stochasticity and variation in floral phyllotaxis.
J Plant Res. 2021 May;134(3):403-416. doi: 10.1007/s10265-021-01283-7. Epub 2021 Apr 5.
3
Floral organ development goes live.
J Exp Bot. 2020 May 9;71(9):2472-2478. doi: 10.1093/jxb/eraa038.
4
The role of in petal number robustness.
Elife. 2018 Oct 18;7:e39399. doi: 10.7554/eLife.39399.
5
Seasonal Regulation of Petal Number.
Plant Physiol. 2017 Oct;175(2):886-903. doi: 10.1104/pp.17.00563. Epub 2017 Aug 31.
6
The significance of developmental robustness for species diversity.
Ann Bot. 2016 Apr;117(5):725-32. doi: 10.1093/aob/mcw018. Epub 2016 Mar 18.

本文引用的文献

1
The genetic architecture of petal number in Cardamine hirsuta.
New Phytol. 2016 Jan;209(1):395-406. doi: 10.1111/nph.13586. Epub 2015 Aug 13.
2
Cardamine hirsuta: a versatile genetic system for comparative studies.
Plant J. 2014 Apr;78(1):1-15. doi: 10.1111/tpj.12447. Epub 2014 Mar 18.
3
Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish.
Science. 2013 Dec 13;342(6164):1372-5. doi: 10.1126/science.1240276.
4
RBE controls microRNA164 expression to effect floral organogenesis.
Development. 2012 Jun;139(12):2161-9. doi: 10.1242/dev.075069. Epub 2012 May 9.
5
PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana.
Plant J. 2012 Sep;71(5):724-35. doi: 10.1111/j.1365-313X.2012.05023.x. Epub 2012 Jun 14.
6
Robustness and flexibility in nematode vulva development.
Trends Genet. 2012 Apr;28(4):185-95. doi: 10.1016/j.tig.2012.01.002. Epub 2012 Feb 9.
8
The Arabidopsis petal: a model for plant organogenesis.
Trends Plant Sci. 2008 Aug;13(8):430-6. doi: 10.1016/j.tplants.2008.05.006. Epub 2008 Jul 5.
9
Genetics of microenvironmental canalization in Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13717-22. doi: 10.1073/pnas.0701936104. Epub 2007 Aug 14.
10
The ABC model and its applicability to basal angiosperms.
Ann Bot. 2007 Aug;100(2):155-63. doi: 10.1093/aob/mcm117. Epub 2007 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验