Monniaux Marie, Pieper Bjorn, Hay Angela
Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany.
Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
Ann Bot. 2016 Apr;117(5):881-7. doi: 10.1093/aob/mcv131. Epub 2015 Sep 7.
Floral development is remarkably robust in terms of the identity and number of floral organs in each whorl, whereas vegetative development can be quite plastic. This canalization of flower development prevents the phenotypic expression of cryptic genetic variation, even in fluctuating environments. A cruciform perianth with four petals is a hallmark of the Brassicaceae family, typified in the model species Arabidopsis thaliana However, variable petal loss is found in Cardamine hirsuta, a genetically tractable relative of A. thaliana Cardamine hirsuta petal number varies in response to stochastic, genetic and environmental perturbations, which makes it an interesting model to study mechanisms of decanalization and the expression of cryptic variation.
Multitrait quantitative trait locus (QTL) analysis in recombinant inbred lines (RILs) was used to identify whether the stochastic variation found in C. hirsuta petal number had a genetic basis.
Stochastic variation (standard error of the average petal number) was found to be a heritable phenotype, and four QTL that influenced this trait were identified. The sensitivity to detect these QTL effects was increased by accounting for the effect of ageing on petal number variation. All QTL had significant effects on both average petal number and its standard error, indicating that these two traits share a common genetic basis. However, for some QTL, a degree of independence was found between the age of the flowers where allelic effects were significant for each trait.
Stochastic variation in C. hirsuta petal number has a genetic basis, and common QTL influence both average petal number and its standard error. Allelic variation at these QTL can, therefore, modify petal number in an age-specific manner via effects on the phenotypic mean and stochastic variation. These results are discussed in the context of trait evolution via a loss of robustness.
花的发育在每个轮次中花器官的特征和数量方面具有显著的稳健性,而营养发育则可能相当具有可塑性。花发育的这种定向化过程可防止隐性遗传变异的表型表达,即使在波动的环境中也是如此。具有四片花瓣的十字形花被是十字花科的一个标志,在模式植物拟南芥中很典型。然而,在碎米荠中发现了可变的花瓣缺失现象,碎米荠是拟南芥的一个遗传上易于处理的近缘种。碎米荠的花瓣数量会因随机、遗传和环境扰动而变化,这使其成为研究去定向化机制和隐性变异表达的有趣模型。
利用重组自交系(RIL)中的多性状数量性状位点(QTL)分析来确定碎米荠花瓣数量中发现的随机变异是否具有遗传基础。
发现随机变异(平均花瓣数的标准误差)是一种可遗传的表型,并鉴定出了影响该性状的四个QTL。通过考虑衰老对花瓣数量变异的影响,检测这些QTL效应的灵敏度得到了提高。所有QTL对平均花瓣数及其标准误差均有显著影响,表明这两个性状具有共同的遗传基础。然而,对于某些QTL,在每个性状等位基因效应显著的花的年龄之间发现了一定程度的独立性。
碎米荠花瓣数量的随机变异具有遗传基础,共同的QTL影响平均花瓣数及其标准误差。因此,这些QTL处的等位基因变异可通过对表型均值和随机变异的影响,以年龄特异性方式改变花瓣数量。这些结果在通过丧失稳健性进行性状进化的背景下进行了讨论。