Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
Lab Chip. 2017 Sep 26;17(19):3310-3317. doi: 10.1039/c7lc00696a.
Existing approaches for droplet generation with an ultra-low interfacial tension using aqueous two-phase systems, ATPS, are either constricted by a narrow range of flow conditions using passive methods or subjected to complex chip fabrication with the integration of external components using active actuation. To address these issues, we present a simple approach to produce uniform ATPS droplets facilitated by oil-droplet choppers in microfluidics. Our solution counts on the synchronized formation of high-interfacial-tension oil-in-water and low-interfacial-tension water-in-water droplets, where the ATPS interface is distorted by oil droplets and decays into water-in-water droplets. In the synchronization regime, the size and generation frequency of ATPS droplets can be controlled independently by tuning the flow rates of the dispersed aqueous and oil phases, respectively. Our method demonstrates high uniformity of droplets (coefficient of variation between 0.75% and 2.45%), a wide range of available droplet size (droplet radius from 5 μm to 180 μm), and a maximum generation frequency of about 2.1 kHz that is nearly two orders of magnitude faster than that in existing methods. We develop theoretical models to precisely predict the minimum and maximum frequencies of droplet generation and the droplet size. The produced ATPS droplets and oil choppers are separated in the channel using density difference. Our method would boost emulsion-based biological applications such as cell encapsulation, biomolecule delivery, bioreactors, and biomaterials synthesis with ATPS droplets.
现有的利用双水相体系(ATPS)产生超低界面张力液滴的方法,要么受到使用被动方法的狭窄流动条件范围的限制,要么受到使用主动激励集成外部组件的复杂芯片制造的限制。为了解决这些问题,我们提出了一种在微流控中使用油滴斩波器来生产均匀的 ATPS 液滴的简单方法。我们的解决方案依赖于高界面张力的油包水和低界面张力的水包水液滴的同步形成,其中 ATPS 界面被油滴扭曲并分解成水包水液滴。在同步状态下,通过分别调整分散的水相和油相的流速,可以独立控制 ATPS 液滴的尺寸和生成频率。我们的方法显示出液滴的高度均匀性(变异系数在 0.75%到 2.45%之间),可用液滴尺寸范围很广(液滴半径从 5μm 到 180μm),最大生成频率约为 2.1kHz,比现有方法快近两个数量级。我们开发了理论模型来精确预测液滴生成的最小和最大频率以及液滴尺寸。利用密度差在通道中分离产生的 ATPS 液滴和油斩波器。我们的方法将促进基于乳液的生物应用,如细胞封装、生物分子传递、生物反应器和 ATPS 液滴的生物材料合成。