Moon Byeong-Ui, Jones Steven G, Hwang Dae Kun, Tsai Scott S H
Ryerson University, Mechanical and Industrial Engineering, Toronto, Canada.
Lab Chip. 2015 Jun 7;15(11):2437-44. doi: 10.1039/c5lc00217f.
We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.
我们提出了一种利用超低界面张力水相两相系统(ATPS)生成液滴的技术。我们的方法将经典的微流控流动聚焦几何结构与精确控制的脉动入口压力相结合,以形成单分散的ATPS液滴。葡聚糖(DEX)分散相通过由气动电磁阀控制的可变开关压力循环从中央入口进入。连续相聚乙二醇(PEG)溶液以固定流速通过交叉通道进入流动聚焦结。施加压力的开关循环与固定流速的错流相结合,使得ATPS射流能够分裂成液滴。我们观察到随着施加压力的大小和时间以及连续相流速的变化,会出现不同的液滴形成模式。我们还开发了一个缩放模型来预测所生成液滴的大小,实验结果与我们的缩放模型显示出良好的定量一致性。此外,我们展示了通过同时生成两个液滴的几何结构来扩大液滴生成速率的潜力。我们预计,这种制造ATPS液滴的简单而精确的方法将在需要ATPS全生物相容性的生物应用中发挥作用。