Redman Joseph S, Natarajan Yamini, Hou Jason K, Wang Jingqi, Hanif Muzammil, Feng Hua, Kramer Jennifer R, Desiderio Roxanne, Xu Hua, El-Serag Hashem B, Kanwal Fasiha
Baylor College of Medicine, Houston, TX, USA.
Clinical Epidemiology and Comparative Effectiveness Program, Center for Innovations in Quality, Effectiveness and Safety, Michael E. Debakey VA Medical Center, John P. McGovern Campus, 2450 Holcombe Blvd., Suite 01Y, Houston, TX, 77021, USA.
Dig Dis Sci. 2017 Oct;62(10):2713-2718. doi: 10.1007/s10620-017-4721-9. Epub 2017 Aug 31.
Natural language processing is a powerful technique of machine learning capable of maximizing data extraction from complex electronic medical records.
We utilized this technique to develop algorithms capable of "reading" full-text radiology reports to accurately identify the presence of fatty liver disease. Abdominal ultrasound, computerized tomography, and magnetic resonance imaging reports were retrieved from the Veterans Affairs Corporate Data Warehouse from a random national sample of 652 patients. Radiographic fatty liver disease was determined by manual review by two physicians and verified with an expert radiologist. A split validation method was utilized for algorithm development.
For all three imaging modalities, the algorithms could identify fatty liver disease with >90% recall and precision, with F-measures >90%.
These algorithms could be used to rapidly screen patient records to establish a large cohort to facilitate epidemiological and clinical studies and examine the clinic course and outcomes of patients with radiographic hepatic steatosis.
自然语言处理是一种强大的机器学习技术,能够从复杂的电子病历中最大限度地提取数据。
我们利用这项技术开发算法,使其能够“读取”全文放射学报告,以准确识别脂肪肝疾病的存在。从退伍军人事务部企业数据仓库中检索了652名患者的随机全国样本的腹部超声、计算机断层扫描和磁共振成像报告。由两名医生通过人工审查确定影像学脂肪肝疾病,并由一名放射学专家进行核实。采用分割验证方法进行算法开发。
对于所有三种成像方式,算法识别脂肪肝疾病的召回率和精确率均大于90%,F值大于90%。
这些算法可用于快速筛查患者记录,以建立一个大型队列,便于进行流行病学和临床研究,并检查影像学肝脂肪变性患者的临床病程和结局。