Suppr超能文献

用于肝病诊断的成像中的人工智能。

Artificial intelligence in imaging for liver disease diagnosis.

作者信息

Yin Chenglong, Zhang Huafeng, Du Jin, Zhu Yingling, Zhu Hua, Yue Hongqin

机构信息

Department of Gastroenterology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China.

Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China.

出版信息

Front Med (Lausanne). 2025 Apr 25;12:1591523. doi: 10.3389/fmed.2025.1591523. eCollection 2025.

Abstract

Liver diseases, including hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC), remain a major global health concern, with early and accurate diagnosis being essential for effective management. Imaging modalities such as ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) play a crucial role in non-invasive diagnosis, but their sensitivity and diagnostic accuracy can be limited. Recent advancements in artificial intelligence (AI) have improved imaging-based liver disease assessment by enhancing pattern recognition, automating fibrosis and steatosis quantification, and aiding in HCC detection. AI-driven imaging techniques have shown promise in fibrosis staging through US, CT, MRI, and elastography, reducing the reliance on invasive liver biopsy. For liver steatosis, AI-assisted imaging methods have improved sensitivity and grading consistency, while in HCC detection and characterization, AI models have enhanced lesion identification, classification, and risk stratification across imaging modalities. The growing integration of AI into liver imaging is reshaping diagnostic workflows and has the potential to improve accuracy, efficiency, and clinical decision-making. This review provides an overview of AI applications in liver imaging, focusing on their clinical utility and implications for the future of liver disease diagnosis.

摘要

肝病,包括肝炎、非酒精性脂肪性肝病(NAFLD)、肝硬化和肝细胞癌(HCC),仍然是全球主要的健康问题,早期准确诊断对于有效治疗至关重要。超声(US)、计算机断层扫描(CT)和磁共振成像(MRI)等成像方式在非侵入性诊断中起着关键作用,但其敏感性和诊断准确性可能有限。人工智能(AI)的最新进展通过增强模式识别、自动化纤维化和脂肪变性量化以及辅助HCC检测,改善了基于成像的肝病评估。人工智能驱动的成像技术在通过US、CT、MRI和弹性成像进行纤维化分期方面显示出前景,减少了对侵入性肝活检的依赖。对于肝脂肪变性,人工智能辅助成像方法提高了敏感性和分级一致性,而在HCC检测和特征描述方面,人工智能模型增强了跨成像方式的病变识别、分类和风险分层。人工智能在肝脏成像中的日益融合正在重塑诊断工作流程,并有可能提高准确性、效率和临床决策。本综述概述了人工智能在肝脏成像中的应用,重点关注其临床效用以及对肝病诊断未来的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9e/12062035/c5c470d05540/fmed-12-1591523-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验