Suppr超能文献

黏土、水和盐:细粒沉积岩渗透率的控制因素。

Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

机构信息

Princeton University , Department of Civil and Environmental Engineering (CEE) and Princeton Environmental Institute (PEI), Princeton New Jersey 08544, United States.

Lawrence Berkeley National Laboratory , Energy Geoscience Division, Berkeley California 94720, United States.

出版信息

Acc Chem Res. 2017 Sep 19;50(9):2067-2074. doi: 10.1021/acs.accounts.7b00261. Epub 2017 Sep 1.

Abstract

The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field theory of colloidal interactions that accurately predicts clay swelling in a narrow range of conditions (low salinity, low compaction, Na counterion). An important feature of clay swelling that is not predicted by these models is the coexistence, in most conditions of aqueous chemistry and dry bulk density, of two types of pores between parallel smectite particles: mesopores with a pore width of >3 nm that are controlled by long-range interactions (the osmotic swelling regime) and nanopores with a pore width <1 nm that are controlled by short-range interactions (the crystalline swelling regime). Nanogeochemical characterization and simulation techniques, including coarse-grained and all-atom molecular dynamics simulations, hold significant promise for the development of advanced constitutive relations that predict this coexistence and its dependence on aqueous chemistry.

摘要

预测细粒土壤、沉积物和沉积岩渗透性的能力是地球科学中的一个基本挑战,对地下水文学具有潜在的变革意义。特别是细粒沉积岩(页岩、泥岩)构成了沉积岩总量的三分之二,并在三种能源技术中发挥着重要作用:石油地质学、地质碳封存和放射性废物管理。这个问题具有挑战性,需要在几个长度尺度上理解复杂天然多孔介质的特性。一个内在的长度尺度,以下简称介观尺度,与几十微米距离上石英、长石和碳酸盐大颗粒的集合体有关。在页岩地层的核心尺度力学性质和区域尺度能源利用方面存在一个阈值,这一事实凸显了其重要性,该阈值可由理想填充模型预测,其中细粒粘土基质填充大颗粒之间的空隙。第二个重要的长度尺度,以下简称纳米尺度,与粘土颗粒(特别是蒙脱石粘土矿物)的聚集和膨胀有关,距离为几十纳米。影响渗透性的介观现象主要是力学的,例如,大颗粒之间的接触能够防止粘土基质的压实。影响渗透性的纳米现象往往具有化学机械性质,因为它们涉及到水化学对粘土膨胀的强烈影响。第二个长度尺度的特征远不如第一个长度尺度明显,因为研究强耦合纳米现象固有的挑战。细粒介质纳米尺度特性的先进模型主要依赖于德加古林-兰德福-沃威(DLVO)理论,这是胶体相互作用的平均场理论,能够准确预测在低盐度、低压实、钠离子反离子条件下的粘土膨胀。这些模型无法预测的一个重要的粘土膨胀特征是,在大多数水化学和干体密度条件下,平行蒙脱石颗粒之间存在两种类型的孔隙:孔径大于 3nm 的介孔,由长程相互作用控制(渗透膨胀区)和孔径小于 1nm 的微孔,由短程相互作用控制(结晶膨胀区)。纳米地球化学的特征化和模拟技术,包括粗粒化和全原子分子动力学模拟,为开发预测这种共存及其对水化学依赖性的先进本构关系提供了很大的希望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验