Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea.
Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea.
Mol Plant Pathol. 2018 May;19(5):1257-1266. doi: 10.1111/mpp.12610. Epub 2017 Nov 29.
The Gac/Rsm network regulates, at the transcriptional level, many beneficial traits in biocontrol-active pseudomonads. In this study, we used Phenotype MicroArrays, followed by specific growth studies and mutational analysis, to understand how catabolism is regulated by this sensor kinase system in the biocontrol isolate Pseudomonas chlororaphis O6. The growth of a gacS mutant was decreased significantly relative to that of the wild-type on ornithine and arginine, and on the precursor of these amino acids, N-acetyl-l-glutamic acid. The gacS mutant also showed reduced production of polyamines. Expression of the genes encoding arginine decarboxylase (speA) and ornithine decarboxylases (speC) was controlled at the transcriptional level by the GacS sensor of P. chlororaphis O6. Polyamine production was reduced in the speC mutant, and was eliminated in the speAspeC mutant. The addition of exogenous polyamines to the speAspeC mutant restored the in vitro growth inhibition of two fungal pathogens, as well as the secretion of three biological control-related factors: pyrrolnitrin, protease and siderophore. These results extend our knowledge of the regulation by the Gac/Rsm network in a biocontrol pseudomonad to include polyamine synthesis. Collectively, our studies demonstrate that bacterial polyamines act as important regulators of bacterial cell growth and biocontrol potential.
Gac/Rsm 网络在转录水平上调节生物防治活性假单胞菌中的许多有益性状。在这项研究中,我们使用表型微阵列,随后进行特定生长研究和突变分析,以了解这种感应激酶系统如何在生物防治分离株恶臭假单胞菌 O6 中调节分解代谢。与野生型相比,gacS 突变体在鸟氨酸和精氨酸以及这些氨基酸的前体 N-乙酰-l-谷氨酸上的生长显著减少。gacS 突变体还表现出多胺产量降低。编码精氨酸脱羧酶(speA)和鸟氨酸脱羧酶(speC)的基因的表达在转录水平上受到恶臭假单胞菌 O6 的 GacS 传感器的控制。speC 突变体中的多胺产量降低,而在 speAspeC 突变体中则消除。向 speAspeC 突变体中添加外源多胺可恢复对两种真菌病原体的体外生长抑制作用,以及三种生物防治相关因子:吡咯并[1,2-a]嘧啶、蛋白酶和铁载体的分泌。这些结果扩展了我们对生物防治假单胞菌中 Gac/Rsm 网络调节的知识,包括多胺合成。总之,我们的研究表明,细菌多胺作为细菌细胞生长和生物防治潜力的重要调节剂。