Pravitasari Arika, Negrito Maelani, Light Kristin, Chang Wei-Shun, Link Stephan, Sheldon Matthew, Batteas James D
Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States.
Department of Chemistry, Rice University , Houston, Texas 77251, United States.
J Phys Chem B. 2018 Jan 18;122(2):730-736. doi: 10.1021/acs.jpcb.7b06357. Epub 2017 Sep 25.
The facile assembly of metal nanostructured arrays is a fundamental step in the design of plasmon enhanced chemical sensing and solar cell architectures. Here we have investigated methods of creating controlled formations of two-dimensional periodic arrays comprised of 20 nm Au nanoparticles (NPs) on a hydrophilic polymer surface using particle lithography. To direct the assembly process, capillary force and NP concentration both play critical roles on the resulting nanostructured arrays. As such, tuning these experimental parameters can directly be used to modify the nature of the nanostructures formed. To explore this, two different concentrations of Au NP solutions (∼7 × 10 or 4 × 10 NPs/mL) were used in conjunction with a fixed concentration of polystyrene microspheres (PS MS, ∼6 × 10 PS MS/mL). Assembly at a relative humidity (RH) of 45% with the higher concentration resulted in the formation of well-defined Au nanorings of ca. 23 nm in height and 881 nm in diameter with a pitch of 2.5 μm. Assembly at 65% RH with the lower concentration of NPs resulted in Au nanodonut arrays comprised of isolated single Au NPs. To explore the extent of coupling in the well-defined structures, dark field scattering spectra were collected and showed a broad localized surface plasmon resonance (LSPR) peak with a shoulder, which full-wave electrodynamics modeling (finite-difference time domain (FDTD) method) attributed to be a result of pronounced particle-particle coupling along the circumference of the nanoring array.
金属纳米结构阵列的简便组装是等离子体增强化学传感和太阳能电池架构设计中的一个基本步骤。在这里,我们研究了使用粒子光刻技术在亲水性聚合物表面创建由20纳米金纳米颗粒(NPs)组成的二维周期性阵列的可控形成方法。为了指导组装过程,毛细管力和NP浓度对所得纳米结构阵列都起着关键作用。因此,调整这些实验参数可直接用于改变所形成纳米结构的性质。为了探究这一点,使用了两种不同浓度的金NP溶液(约7×10或4×10 NPs/mL),并结合固定浓度的聚苯乙烯微球(PS MS,约6×10 PS MS/mL)。在相对湿度(RH)为45%的条件下,使用较高浓度进行组装,形成了高度约为23纳米、直径为881纳米、间距为2.5微米的定义明确的金纳米环。在65% RH条件下,使用较低浓度的NPs进行组装,得到了由孤立的单个金NP组成的金纳米甜甜圈阵列。为了探究定义明确的结构中的耦合程度,收集了暗场散射光谱,结果显示出一个带有肩部的宽局域表面等离子体共振(LSPR)峰,全波电动力学建模(有限差分时域(FDTD)方法)将其归因于纳米环阵列圆周上明显的粒子 - 粒子耦合的结果。