Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
J Chem Phys. 2017 Aug 28;147(8):084708. doi: 10.1063/1.4994088.
We propose a method to calculate the equilibrium contact angle of heterogeneous 3-phase solid/fluid/fluid systems using molecular dynamics simulations. The proposed method, which combines the phantom-wall method [F. Leroy and F. Müller-Plathe, J. Chem. Phys. 133, 044110 (2010)] and Bennett's acceptance ratio approach [C. H. Bennett, J. Comput. Phys. 22, 245 (1976)], is able to calculate the solid/fluid surface tension relative to the solid surface energy. The calculated relative surface tensions can then be used in Young's equation to estimate the equilibrium contact angle. A fluid droplet is not needed for the proposed method, in contrast to the situation for direct simulations of contact angles. In addition, while prior free-energy based methods for contact angles mainly focused on the wetting of fluids in coexistence with their vapor on solid surfaces, the proposed approach was designed to study the contact angles of fluid mixtures on solid surfaces above the fluid saturation pressures. Using the proposed approach, the contact angles of binary Lennard-Jones fluid mixtures on a non-polar solid substrate were calculated at various interaction parameters and the contact angle of water in equilibrium with CO on a hydrophilic polar silica surface was obtained. For both non-polar and polar systems, the calculated contact angles from the proposed method were in agreement with those obtained from the geometry of a cylindrical droplet. The computational cost of the proposed method was found to be comparable to that of simulations that use fluid droplets, but the new method provides a way to calculate the contact angle directly from Young's equation without ambiguity.
我们提出了一种使用分子动力学模拟计算非均相三相固/液/液体系平衡接触角的方法。该方法结合了幻影壁方法[F. Leroy 和 F. Müller-Plathe, J. Chem. Phys. 133, 044110 (2010)]和 Bennett 的接受率方法[C. H. Bennett, J. Comput. Phys. 22, 245 (1976)],能够计算相对于固体表面能的固体/流体表面张力。然后,计算出的相对表面张力可用于杨氏方程来估算平衡接触角。与直接模拟接触角的情况不同,该方法不需要液滴。此外,尽管之前基于自由能的接触角方法主要集中于研究在固体表面上共存的流体的润湿,但所提出的方法旨在研究在流体饱和压力以上的固体表面上流体混合物的接触角。使用所提出的方法,在不同的相互作用参数下计算了二元 Lennard-Jones 流体混合物在非极性固体衬底上的接触角,并获得了与亲水性极性二氧化硅表面上 CO 平衡的水的接触角。对于非极性和极性体系,所提出的方法计算出的接触角与从圆柱形液滴的几何形状得出的接触角一致。所提出的方法的计算成本被发现与使用液滴的模拟相当,但新方法提供了一种直接从杨氏方程计算接触角的方法,避免了歧义。