McHale Glen, Orme Bethany V, Wells Gary G, Ledesma-Aguilar Rodrigo
Smart Materials & Surfaces Laboratory, Faculty of Engineering & Environment , Northumbria University , Newcastle upon Tyne NE1 8ST , U.K.
Langmuir. 2019 Mar 19;35(11):4197-4204. doi: 10.1021/acs.langmuir.8b04136. Epub 2019 Mar 5.
A fundamental limitation of liquids on many surfaces is their contact line pinning. This limitation can be overcome by infusing a nonvolatile and immiscible liquid or lubricant into the texture or roughness created in or applied onto the solid substrate so that the liquid of interest no longer directly contacts the underlying surface. Such slippery liquid-infused porous surfaces (SLIPS), also known as lubricant-impregnated surfaces, completely remove contact line pinning and contact angle hysteresis. However, although a sessile droplet may rest on such a surface, its contact angle can be only an apparent contact angle because its contact is now with a second liquid and not a solid. Close to the solid, the droplet has a wetting ridge with a force balance of the liquid-liquid and liquid-vapor interfacial tensions described by Neumann's triangle rather than Young's law. Here, we show how, provided the lubricant coating is thin and the wetting ridge is small, a surface free energy approach can be used to obtain an apparent contact angle equation analogous to Young's law using interfacial tensions for the lubricant-vapor and liquid-lubricant and an effective interfacial tension for the combined liquid-lubricant-vapor interfaces. This effective interfacial tension is the sum of the liquid-lubricant and the lubricant-vapor interfacial tensions or the liquid-vapor interfacial tension for a positive and negative spreading power of the lubricant on the liquid, respectively. Using this approach, we then show how Cassie-Baxter, Wenzel, hemiwicking, and other equations for rough, textured or complex geometry surfaces and for electrowetting and dielectrowetting can be used with the Young's law contact angle replaced by the apparent contact angle from the equivalent smooth lubricant-impregnated surface. The resulting equations are consistent with the literature data. These results enable equilibrium contact angle theory for sessile droplets on surfaces to be used widely for surfaces that retain a thin and conformal SLIPS coating.
液体在许多表面上存在一个基本限制,即其接触线钉扎现象。通过将一种不挥发且不混溶的液体或润滑剂注入到固体基底内部产生的纹理或粗糙度中,或者施加到固体基底上,这样感兴趣的液体就不再直接接触下层表面,从而可以克服这一限制。这种注入液体的多孔光滑表面(SLIPS),也称为润滑剂浸渍表面,能完全消除接触线钉扎和接触角滞后现象。然而,尽管一个静止的液滴可能停留在这样的表面上,但其接触角只能是一个表观接触角,因为它现在接触的是第二种液体而非固体。在靠近固体处,液滴有一个润湿脊,其力平衡由描述液 - 液和液 - 气界面张力的诺伊曼三角形而非杨氏定律给出。在此,我们展示了如何在润滑剂涂层薄且润湿脊小的情况下,使用表面自由能方法,利用润滑剂 - 气和液体 - 润滑剂的界面张力以及液体 - 润滑剂 - 气组合界面的有效界面张力,得到一个类似于杨氏定律的表观接触角方程。这个有效界面张力分别是液体 - 润滑剂和润滑剂 - 气界面张力之和,或者对于润滑剂在液体上具有正和负铺展能力时的液 - 气界面张力。使用这种方法,我们接着展示了如何将用于粗糙、有纹理或复杂几何形状表面以及电润湿和介电润湿的卡西 - 巴克斯特、温泽尔、半芯吸等方程,用等效光滑润滑剂浸渍表面的表观接触角代替杨氏定律接触角来使用。所得方程与文献数据一致。这些结果使得关于表面上静止液滴的平衡接触角理论能够广泛应用于保留薄且保形的SLIPS涂层的表面。