Suppr超能文献

一种用于线性预测的具有稳定1-范数解的一维搜索方法。

A one-dimensional search method with stable 1-norm solution for linear prediction.

作者信息

Jayesh M K, Ramalingam C S

机构信息

Department of Electrical Engineering, IIT Madras, Chennai 600036, India

出版信息

J Acoust Soc Am. 2017 Aug;142(2):EL170. doi: 10.1121/1.4996455.

Abstract

In this paper a simple iterative algorithm that is guaranteed to produce a stable all-pole filter when minimizing the 1-norm of the linear prediction error signal is proposed. The approach works for both the autocorrelation and covariance frameworks, involves only a one-dimensional search at each step, and obviates the need for linear programming based methods. Based on simulation studies, it was observed that the performance of the algorithm is nearly optimal, i.e., very close to the estimates obtained using interior point methods. Moreover, this method also has the ability to constrain the bandwidth of any peak. The proposed method has been applied for vocal tract estimation and, using spectral distortion as the metric, results are presented using synthetic as well as natural speech.

摘要

本文提出了一种简单的迭代算法,当最小化线性预测误差信号的1-范数时,该算法能保证产生一个稳定的全极点滤波器。该方法适用于自相关和协方差框架,每一步仅涉及一维搜索,并且无需基于线性规划的方法。基于仿真研究,观察到该算法的性能近乎最优,即非常接近使用内点法获得的估计值。此外,该方法还能够限制任何峰值的带宽。所提出的方法已应用于声道估计,并以频谱失真作为度量标准,给出了使用合成语音和自然语音的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验