Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India.
Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India.
Infect Genet Evol. 2017 Nov;55:75-92. doi: 10.1016/j.meegid.2017.08.029. Epub 2017 Aug 31.
Trichoderma is one of the most exploited biocontrol agent for the management of plant diseases. Twenty strains of Trichoderma (six of T. harzianum, four of T. viride, three of T. virens, three of T. koningii, each one of T. hamatum, T. reesei, T. parceramosum and Trichoderma spp.) subjected to in vitro antagonism up to 12days after inoculation against Sclerotium rolfsii Sacc. causing stem rot in groundnut. A new concept was developed to determine inhibition coefficient representing pathogen biology and biocontrol related biophysical variables. Results explained differential inhibition coefficient of test pathogen by Trichoderma antagonists. The inhibition coefficient of test pathogen was examined highest (91.13%) by T. virens NBAII Tvs12 followed by T. virens MTCC 794 (89.33%) and T. koningii MTCC 796 (62.39%). Microscopic study confirmed biocontrol mechanism as mycoparasitism for Tvs12 and antibiosis for T. koningii MTCC 796. The sclerotial biogenesis of test pathogen was elevated during weak antagonism and diminished in interactions with strong antagonists. The inhibition coefficient of S. rolfsii was significantly negatively correlated with sclerotia formation and lipid peroxidation during the antagonism. Trichoderma strains were screened for fungicides (carbendazim and tebuconazole, thiram and mancozeb) and abiotic stress (drought and salt) tolerance. Results indicated that T. koningii MTCC 796 efficiently grew better than the other strains with maximum radial growth under adverse conditions. The genetic variability among the Trichoderma was determined using 34 gene specific markers which amplified 146 alleles. The SSR similarities explained substantial diversity (15 to 87%) across Trichoderma strains and pathogen S. rolfsii. Principal coordinates analysis (PCA) were comparable to the cluster analysis and first three most informative PC components explained 64.45% of the total variation. In PCA, potent antagonists appear to be distinct from other strains. Five SSR markers T1F/T1R, TvCTT56f/TvCTT56r, TvGAT18f/TvGAT18r, TvCA39f/TvCA39r and TvAG29f/TvAG29r found to be unique to distinguish best antagonist strain Tvs12. However, MTCC 796 was examined most stress tolerant strain with better inhibition coefficient which might be useful to control the disease under adverse conditions or as a part of integrated pest management.
木霉是一种最常用于防治植物病害的生物防治剂。20 株木霉(6 株哈茨木霉、4 株绿色木霉、3 株绿僵菌、3 株康氏木霉、1 株长枝木霉、1 株里氏木霉、1 株拟康氏木霉和木霉属)在接种后 12 天内进行了体外拮抗试验,以防治导致落花生茎腐病的病原菌。提出了一个新概念来确定抑制系数,以代表病原菌生物学和与生物防治相关的生物物理变量。结果解释了测试病原菌被木霉拮抗物的不同抑制系数。测试病原菌的抑制系数最高(91.13%)的是木霉菌 NBAII Tvs12,其次是木霉菌 MTCC 794(89.33%)和康氏木霉 MTCC 796(62.39%)。显微镜研究证实了生物防治机制是对 Tvs12 的菌寄生和对 T. koningii MTCC 796 的抗生作用。在弱拮抗作用下,病原菌的菌核发生增加,而在与强拮抗物的相互作用中则减少。在拮抗作用过程中,木霉对 S. rolfsii 的抑制系数与菌核形成和脂质过氧化呈显著负相关。对木霉菌株进行了杀菌剂(多菌灵和戊唑醇、福美双和代森锰锌)和非生物胁迫(干旱和盐胁迫)耐受性的筛选。结果表明,康氏木霉 MTCC 796 在不利条件下比其他菌株生长更好,径向生长最大。利用 34 个基因特异性标记物对木霉进行了遗传变异分析,这些标记物扩增了 146 个等位基因。SSR 相似性解释了木霉菌株和病原菌 S. rolfsii 之间的大量多样性(15%至 87%)。主坐标分析(PCA)与聚类分析相似,前三个最具信息量的 PC 成分解释了总变异的 64.45%。在 PCA 中,有效拮抗物似乎与其他菌株明显不同。发现 5 个 SSR 标记物 T1F/T1R、TvCTT56f/TvCTT56r、TvGAT18f/TvGAT18r、TvCA39f/TvCA39r 和 TvAG29f/TvAG29r 可用于区分最佳拮抗菌株 Tvs12。然而,MTCC 796 被认为是最具耐胁迫性的菌株,具有较好的抑制系数,这可能有助于在不利条件下控制病害或作为病虫害综合治理的一部分。