Shimbo Akihiro, Kosaki Yutaka, Ito Isao, Watanabe Shigeru
Graduate School of Human Relations, Department of Psychology, Keio University, 2-15-45, Mita, Minato-ku, Tokyo, Japan.
Advanced Research Centers, Keio University, 2-15-45, Mita, Minato-ku, Tokyo, Japan; Department of Psychology, Waseda University, 1-24-1, Toyama, Shinjuku-ku, Tokyo, Japan.
Behav Brain Res. 2018 Jan 15;336:156-165. doi: 10.1016/j.bbr.2017.08.043. Epub 2017 Aug 31.
Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning.
已知左右不对称存在于大脑的多个解剖层面,最近的研究进一步证明其在海马体CA3 - CA1回路的分子层面也存在。如果输入来自左侧或右侧CA3锥体神经元,N - 甲基 - D - 天冬氨酸(NMDA)受体NR2B亚基在CA1锥体神经元顶突触和基底突触中的分布是不对称的。在本研究中,我们使用缺乏海马体不对称性的β2 - 微球蛋白基因敲除(β2m KO)小鼠,研究了海马体不对称性在认知功能中的作用。我们在一系列空间和非空间学习任务中测试了β2m KO小鼠,并比较了β2m KO小鼠和C57BL6/J野生型(WT)小鼠的表现。β2m KO小鼠在空间参考记忆和空间工作记忆任务中表现正常,但在学习两项非空间学习任务(即低行为率差异强化(DRL)任务和直线跑道任务)时,它们比WT小鼠花费的时间更多。β2m KO小鼠在DRL任务中的反应时间精度也较低,在直线跑道任务的消退过程中自发恢复较弱。这些结果表明,海马体不对称性对非空间学习的某些特征很重要。