I. Ito: Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
J Physiol. 2013 Oct 1;591(19):4777-91. doi: 10.1113/jphysiol.2013.252122. Epub 2013 Jul 22.
Left-right asymmetry is a fundamental feature of higher-order brain function; however, the molecular basis of brain asymmetry has remained unclear. We have recently demonstrated asymmetries in hippocampal circuitry resulting from the asymmetrical allocation of NMDA receptor (NMDAR) subunit GluR2 (NR2B) in pyramidal cell synapses. This asymmetrical allocation of 2 subunits affects the properties of NMDARs and generates two populations of synapses, '2-dominant' and '2-non-dominant' synapses, according to the hemispheric origin of presynaptic inputs and cell polarity of the postsynaptic neurone. To identify key regulators for generating asymmetries, we analysed the hippocampus of β2-microglobulin (β2m)-deficient mice lacking cell surface expression of major histocompatibility complex class I (MHCI). Although MHCI proteins are well known in the immune system, accumulating evidence indicates that MHCI proteins are expressed in the brain and are required for activity-dependent refinement of neuronal connections and normal synaptic plasticity. We found that β2m proteins were localised in hippocampal synapses in wild-type mice. NMDA EPSCs in β2m-deficient hippocampal synapses receiving inputs from both hemispheres showed similar sensitivity to Ro 25-6981, an 2 subunit-selective antagonist, with those in '2-dominant' synapses for both the apical and basal synapses of pyramidal neurones. The structural features of the β2m-deficient synapse in addition to the relationship between the stimulation frequency and synaptic plasticity were also comparable to those of '2-dominant' synapses. These observations indicate that the β2m-deficient hippocampus lacks '2-non-dominant' synapses and circuit asymmetries. Our findings provide evidence supporting a critical role of MHCI molecules for generating asymmetries in hippocampal circuitry.
左右不对称是高级脑功能的基本特征;然而,脑不对称的分子基础仍不清楚。我们最近证明了海马回路的不对称性,这是由于 NMDA 受体 (NMDAR) 亚基 GluR2 (NR2B) 在锥体细胞突触中的不对称分配所致。这种 2 亚基的不对称分配影响 NMDAR 的特性,并根据突触前输入的半球起源和突触后神经元的细胞极性产生两种突触群体,即“2 主导”和“2 非主导”突触。为了确定产生不对称性的关键调节因子,我们分析了缺乏主要组织相容性复合体 I (MHCI) 细胞表面表达的β2-微球蛋白 (β2m) 缺陷型小鼠的海马体。尽管 MHCI 蛋白在免疫系统中众所周知,但越来越多的证据表明 MHCI 蛋白在大脑中表达,并且对于神经元连接的活动依赖性细化和正常的突触可塑性是必需的。我们发现β2m 蛋白在野生型小鼠的海马突触中定位。来自两个半球的输入的β2m 缺陷型海马突触中的 NMDA EPSC 对 Ro 25-6981(一种 2 亚基选择性拮抗剂)的敏感性相似,对于锥体神经元的顶端和基底部突触的“2 主导”突触均如此。除了刺激频率与突触可塑性之间的关系外,β2m 缺陷型突触的结构特征也与“2 主导”突触相似。这些观察结果表明,β2m 缺陷型海马体缺乏“2 非主导”突触和电路不对称性。我们的发现为 MHCI 分子在海马回路产生不对称性中起关键作用提供了证据。