Suppr超能文献

突触的形成:德雷布林A在一生中兴奋性突触中的反复作用。

Making of a Synapse: Recurrent Roles of Drebrin A at Excitatory Synapses Throughout Life.

作者信息

Aoki Chiye, Sherpa Ang D

机构信息

Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY, 10003, USA.

出版信息

Adv Exp Med Biol. 2017;1006:119-139. doi: 10.1007/978-4-431-56550-5_8.

Abstract

Mature excitatory synapses are composed of more than 1500 proteins postsynaptically and hundreds more that operate presynaptically. Among them, drebrin is an F-actin-binding protein that increases noticeably during juvenile synaptogenesis. Electron microscopic analysis reveals that drebrin is highly enriched specifically on the postsynaptic side of excitatory synapses. Since dendritic spines are structures specialized for excitatory synaptic transmission, the function of drebrin was probed by analyzing the ultrastructural characteristics of dendritic spines of animals with genetic deletion of drebrin A (DAKO), the adult isoform of drebrin. Electron microscopic analyses revealed that these brains are surprisingly intact, in that axo-spinous synaptic junctions are well-formed and not significantly altered in number. This normal ultrastructure may be because drebrin E, the alternate embryonic isoform, compensates for the genetic deletion of drebrin A. However, DAKO results in the loss of homeostatic plasticity of N-methyl-D-aspartate receptors (NMDARs). The NMDAR activation-dependent trafficking of the NR2A subunit-containing NMDARs from dendritic shafts into spine head cytoplasm is greatly diminished within brains of DAKO. Conversely, within brains of wild-type rodents, spines respond to NMDAR blockade with influx of F-actin, drebrin A, and NR2A subunits of NMDARs. These observations indicate that drebrin A facilitates the trafficking of NMDAR cargos in an F-actin-dependent manner to mediate homeostatic plasticity. Analysis of the brains of transgenic mice used as models of Alzheimer's disease (AD) reveals that the loss of drebrin from dendritic spines predates the emergence of synaptic dysfunction and cognitive impairment, suggesting that this form of homeostatic plasticity contributes toward cognition. Two studies suggest that the nature of drebrin's interaction with NMDARs is dependent on the receptor's subunit composition. Drebrin A can be found co-clustering with NR2B-containing NMDARs at the plasma membrane, while NR2A-containing NMDARs co-traffic into the spine cytoplasm but do not co-cluster at the plasma membrane. Most recently, we encountered a physiological condition that supports this idea. When adolescent female rats are reared under a condition of restricted food access and ad libitum wheel access, they paradoxically become excessive runners, choosing to run, even during the limited hours of food availability. This behavioral pattern is termed activity-based anorexia (ABA) and has served as an animal model for anorexia nervosa. Those animals that exhibit the greatest ABA vulnerability, in that they lose the most amount of body weight and run with greatest exuberance to the point of risking their lives, exhibit the highest levels of NR2B-NMDARs and drebrin at the postsynaptic membrane of hippocampal pyramidal neurons. Those animals that exhibit the greatest resilience to ABA, in that they run minimally under such condition, thereby losing minimal amount of weight, exhibit the highest level of NR2A-NMDARs in the spine cytoplasm and lowest levels of drebrin at the postsynaptic membrane. This pattern suggests that drebrin has dual roles: retention of NR2A-NMDARs in the reserve pool and trafficking of NR2B-NMDARs to the postsynaptic membrane, ultimately contributing to an individual's reactivity to stress. Altogether, these observations indicate that drebrin is a protein that is important for synaptic plasticity and deserves the attention of neuroscientists studying the neurobiological basis of cognition and stress reactivity.

摘要

成熟的兴奋性突触在突触后由1500多种蛋白质组成,在突触前还有数百种蛋白质发挥作用。其中,drebrin是一种F-肌动蛋白结合蛋白,在幼年突触形成过程中显著增加。电子显微镜分析显示,drebrin在兴奋性突触的突触后一侧高度富集。由于树突棘是专门用于兴奋性突触传递的结构,通过分析drebrin A(DAKO,drebrin的成年异构体)基因缺失动物的树突棘超微结构特征来探究drebrin的功能。电子显微镜分析显示,这些大脑出人意料地完好无损,轴突-棘突触连接形成良好,数量没有明显改变。这种正常的超微结构可能是因为drebrin E(另一种胚胎异构体)补偿了drebrin A的基因缺失。然而,DAKO导致N-甲基-D-天冬氨酸受体(NMDARs)的稳态可塑性丧失。在DAKO小鼠的大脑中,依赖NMDAR激活的含NR2A亚基的NMDARs从树突轴运输到棘头细胞质的过程大大减少。相反,在野生型啮齿动物的大脑中,棘对NMDAR阻断的反应是F-肌动蛋白、drebrin A和NMDARs的NR2A亚基流入。这些观察结果表明,drebrin A以F-肌动蛋白依赖的方式促进NMDAR货物的运输,以介导稳态可塑性。对用作阿尔茨海默病(AD)模型的转基因小鼠大脑的分析表明,树突棘中drebrin的丧失早于突触功能障碍和认知障碍的出现,这表明这种形式的稳态可塑性有助于认知。两项研究表明,drebrin与NMDARs相互作用的性质取决于受体的亚基组成。在质膜上可以发现drebrin A与含NR2B的NMDARs共聚集,而含NR2A的NMDARs共同运输到棘细胞质中,但在质膜上不共聚集。最近,我们遇到了一种支持这一观点的生理状况。当青春期雌性大鼠在食物受限和随意使用轮子的条件下饲养时,它们会反常地成为过度奔跑者,甚至在有限的食物供应时间内也选择奔跑。这种行为模式被称为基于活动的厌食症(ABA),并已作为神经性厌食症的动物模型。那些表现出最大ABA易感性的动物,即体重减轻最多且以最大热情奔跑至危及生命的动物,在海马锥体神经元的突触后膜上表现出最高水平的NR2B-NMDARs和drebrin。那些对ABA表现出最大恢复力的动物,即在这种条件下奔跑最少,从而体重减轻最少的动物,在棘细胞质中表现出最高水平的NR2A-NMDARs,在突触后膜上表现出最低水平的drebrin。这种模式表明drebrin具有双重作用:将NR2A-NMDARs保留在储备池中,并将NR2B-NMDARs运输到突触后膜,最终影响个体对应激的反应性。总之,这些观察结果表明,drebrin是一种对突触可塑性很重要的蛋白质,值得研究认知和应激反应性神经生物学基础的神经科学家关注。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验