Oertel Donata, Cao Xiao-Jie, Ison James R, Allen Paul D
Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA.
Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA.
Trends Neurosci. 2017 Oct;40(10):613-624. doi: 10.1016/j.tins.2017.08.001. Epub 2017 Aug 31.
In mammals, acoustic information arises in the cochlea and is transmitted to the ventral cochlear nuclei (VCN). Three groups of VCN neurons extract different features from the firing of auditory nerve fibers and convey that information along separate pathways through the brainstem. Two of these pathways process temporal information: octopus cells detect coincident firing among auditory nerve fibers and transmit signals along monaural pathways, and bushy cells sharpen the encoding of fine structure and feed binaural pathways. The ability of these cells to signal with temporal precision depends on a low-voltage-activated K conductance (g) and a hyperpolarization-activated conductance (g). This 'tale of two conductances' traces gap detection and sound lateralization to their cellular and biophysical origins.
在哺乳动物中,声学信息产生于耳蜗,并被传输至腹侧耳蜗核(VCN)。三组VCN神经元从听神经纤维的放电中提取不同特征,并通过脑干中不同的通路传递这些信息。其中两条通路处理时间信息:章鱼细胞检测听神经纤维之间的同步放电,并沿单耳通路传输信号,而浓密细胞则锐化精细结构的编码并为双耳通路提供信息。这些细胞以时间精度发出信号的能力取决于低电压激活的钾电导(g)和超极化激活的电导(g)。这个“两种电导的故事”将间隙检测和声音定位追溯到它们的细胞和生物物理起源。