Yousef Kalafi E, Town C, Kaur Dhillon S
University of Malaya, Institute of Biological Sciences, Faculty of Science,, 50603 Kuala Lumpur, Malaysia.
Folia Morphol (Warsz). 2018;77(2):179-193. doi: 10.5603/FM.a2017.0079. Epub 2017 Sep 4.
Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification incre-ased over the last two decades. Automation of data classification is primarily focussed on images while incorporating and analysing image data has recently become easier due to developments in computational technology. Research ef-forts on identification of species include specimens' image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, mainly for categorising and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies. (Folia Morphol 2018; 77, 2: 179-193).
在特定水平上识别分类法既耗时又依赖于专业生态学家。因此,在过去二十年中,对自动物种识别的需求不断增加。数据分类的自动化主要集中在图像上,而由于计算技术的发展,合并和分析图像数据最近变得更加容易。物种识别的研究工作包括标本图像处理、提取相同特征,然后将它们分类到正确的类别中。在本文中,我们讨论了最近的自动物种识别系统,主要是对它们的方法进行分类和评估。我们在物种图像自动识别和分类系统的逐步方案中回顾和比较了不同的方法。方法的选择受到许多变量的影响,如分类水平、训练数据数量和图像复杂性。撰写本文的目的是为研究人员和科学家提供关于自动物种识别相关工作的广泛背景研究,重点是在构建用于生物多样性研究的此类系统中的模式识别技术。(《形态学杂志》2018年;77卷,第2期:179 - 193页)