Coskuner Orkid, Uversky Vladimir N
The University of Texas at San Antonio, Department of Chemistry and Neurosciences Institute, One UTSA Circle, San Antonio, TX 78249, USA; Universität zu Köln, Institut für Physikalische Chemie, Luxemburger Strasse 116, Köln, Germany; Turkisch-Deutsche Universität, Molecular Biotechnology Division, Sahinkaya Caddesi, No. 71, Beykoz, Istanbul 34820, Turkey.
Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
J Mol Graph Model. 2017 Oct;77:181-188. doi: 10.1016/j.jmgm.2017.08.005. Epub 2017 Aug 9.
Signal ligands of the transforming growth factor-β (TGF-β) superfamily include the bone morphogenetic proteins (BMPs). BMPs bind to type I and type II serine-threonine kinase receptors and trigger the transphosphorylation cascade, wherein the active type II receptor phosphorylates the inactive type I receptor. This process further activates the cytoplasmic effectors of the pathway, such as SMAD proteins, which are homologs of both the Drosophila protein MAD (mothers against decapentaplegic) and the Caenorhabditis elegans protein SMA (small body size). Even though biological and medicinal studies have been performed on these complex species, we currently do not know the underlying molecular mechanisms of the signal ligand interactions with the receptors. Detailed understanding of these interactions increases our knowledge about these proteins, and also can provide the lacking information for successful mutation experiments. This study focuses on the computational analysis of binding affinities and structural binding specificities of two different types of BMPs (BMP-2 and BMP-9) to the activin receptor-like kinases (ALK-3) in solution. For studying the binding characteristics of BMP-2 or BMP-9 with ALK-3 in aqueous solution, we performed extensive molecular dynamics simulations coupled with thermodynamic calculations. The calculated thermodynamic properties show that the BMP-2/ALK-3 complex is thermodynamically more stable than a possible BMP-9/ALK-3 species in aqueous solution. The binding free energies indicate that ALK-3 preferably binds to BMP-2 instead of BMP-9. The structural analysis shows that ALK-3 binding with BMP-2 occurs in a perfectly symmetry pathway, whereas this symmetry is lost for possible ALK-3 interactions with BMP-9. The Phe49 to Val70 loop region of BMP-2 presents strong inter-molecular interactions with ALK-3. On the other hand, BMP-9 presents weaker interactions with ALK-3 via a non-continuous sequence. ALK-3-binding region of BMP-2 corresponds to the region predicted to be flexible by our intrinsic disorder analysis, whereas the related region of BMP-9 is expected to be noticeably less flexible. This study proposes that mutating the BMP-9 with the partial Phe49 to Val70 sequence of BMP-2 can help to increase the reactivity of BMP-9 towards stable ALK-3 binding, which in turn has the potential to develop new signaling pathways for improving the formation of tissues and to prevent or treat severe diseases. Furthermore, this study also demonstrates the usefulness of theoretical physical chemistry tools, such as molecular dynamics simulations and the ProtMet simulation software package in the structural characterization of the TGF-β superfamily proteins.
转化生长因子-β(TGF-β)超家族的信号配体包括骨形态发生蛋白(BMP)。BMP与I型和II型丝氨酸-苏氨酸激酶受体结合并触发转磷酸化级联反应,其中活性II型受体使无活性的I型受体磷酸化。这一过程进一步激活该信号通路的细胞质效应分子,如SMAD蛋白,它们是果蝇蛋白MAD(抗脱靶蛋白)和秀丽隐杆线虫蛋白SMA(小体型)的同源物。尽管已经对这些复杂的物种进行了生物学和医学研究,但目前我们还不知道信号配体与受体相互作用的潜在分子机制。对这些相互作用的详细了解可以增加我们对这些蛋白质的认识,也可以为成功的突变实验提供缺失的信息。本研究重点对两种不同类型的BMP(BMP-2和BMP-9)与溶液中的激活素受体样激酶(ALK-3)的结合亲和力和结构结合特异性进行计算分析。为了研究BMP-2或BMP-9与ALK-3在水溶液中的结合特性,我们进行了广泛的分子动力学模拟并结合热力学计算。计算得到的热力学性质表明,在水溶液中,BMP-2/ALK-3复合物在热力学上比可能的BMP-9/ALK-3复合物更稳定。结合自由能表明ALK-3优先与BMP-2结合而不是BMP-9。结构分析表明,ALK-3与BMP-2的结合以完全对称的方式发生,而对于ALK-3与BMP-9可能的相互作用,这种对称性则丧失。BMP-2的Phe49至Val70环区域与ALK-3呈现出强烈的分子间相互作用。另一方面,BMP-9通过一个不连续的序列与ALK-3呈现较弱的相互作用。BMP-2的ALK-3结合区域对应于我们通过内在无序分析预测为灵活的区域,而BMP-9的相关区域预计灵活性明显较低。本研究提出,用BMP-2的部分Phe49至Val70序列对BMP-9进行突变有助于提高BMP-9与稳定的ALK-3结合的反应性,这反过来有可能开发新的信号通路以促进组织形成并预防或治疗严重疾病。此外,本研究还证明了理论物理化学工具,如分子动力学模拟和ProtMet模拟软件包在TGF-β超家族蛋白结构表征中的有用性。