Department of Chemistry, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, 12489 Berlin, Germany.
Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
ACS Appl Mater Interfaces. 2017 Sep 27;9(38):33308-33316. doi: 10.1021/acsami.7b10106. Epub 2017 Sep 14.
Although the deposition of alternating layers from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) salts has recently provided a breakthrough in the field of conductive polymers, the cause for the conductivity improvement has remained unclear. In this work, we report a cooperative doping effect between alternating PANI base and PEDOT:PSS layers, resulting in electrical conductivities of 50-100 S cm and power factors of up to 3.0 ± 0.5 μW m K, which surpass some of the recent values obtained for protonated PANI/PEDOT:PSS multilayers by a factor of 20. In this case, the simultaneous improvement in the electrical conductivity of both types of layers is caused by the in situ protonation of PANI, which corresponds to the removal of the excess acidic PSS chains from the PEDOT:PSS grains. The interplay between the functional groups' reactivity and the supramolecular chain reorganization leads to an array of preparation-dependent phenomena, including a stepwise increase in the film thickness, an alternation in the electrical conductivity, and the formation of a diverse surface landscape. The latter effect can be traced to a buildup of strain within the layers, which results in either the formation of folds or the shrinkage of the film. These results open new paths for designing nanostructured thin-film thermoelectrics.
虽然交替沉积聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)和聚苯胺(PANI)盐的方法最近在导电聚合物领域取得了突破,但提高导电性的原因仍不清楚。在这项工作中,我们报告了交替的 PANI 基和 PEDOT:PSS 层之间的协同掺杂效应,导致电导率为 50-100 S cm,功率因子高达 3.0±0.5 μW m K,超过了最近通过质子化 PANI/PEDOT:PSS 多层获得的一些值的 20 倍。在这种情况下,两种类型的层的电导率同时提高是由于 PANI 的原位质子化,这对应于从 PEDOT:PSS 颗粒中除去多余的酸性 PSS 链。官能团反应性和超分子链重组之间的相互作用导致一系列依赖于制备的现象,包括膜厚度的逐步增加、电导率的交替以及不同表面形貌的形成。后一种效应可以追溯到层内应变的积累,这导致膜的折叠或收缩。这些结果为设计纳米结构的薄膜热电材料开辟了新途径。