Suppr超能文献

预测美国毗邻河流和溪流的生物状况。

Predictive mapping of the biotic condition of conterminous U.S. rivers and streams.

机构信息

National Health and Environmental Effects Research Laboratory, Western Ecology Division, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, Oregon, 97333, USA.

出版信息

Ecol Appl. 2017 Dec;27(8):2397-2415. doi: 10.1002/eap.1617. Epub 2017 Nov 3.

Abstract

Understanding and mapping the spatial variation in stream biological condition could provide an important tool for conservation, assessment, and restoration of stream ecosystems. The USEPA's 2008-2009 National Rivers and Streams Assessment (NRSA) summarizes the percentage of stream lengths within the conterminous United States that are in good, fair, or poor biological condition based on a multimetric index of benthic invertebrate assemblages. However, condition is usually summarized at regional or national scales, and these assessments do not provide substantial insight into the spatial distribution of conditions at unsampled locations. We used random forests to model and predict the probable condition of several million kilometers of streams across the conterminous United States based on nearby and upstream landscape features, including human-related alterations to watersheds. To do so, we linked NRSA sample sites to the USEPA's StreamCat Dataset; a database of several hundred landscape metrics for all 1:100,000-scale streams and their associated watersheds within the conterminous United States. The StreamCat data provided geospatial indicators of nearby and upstream land use, land cover, climate, and other landscape features for modeling. Nationally, the model correctly predicted the biological condition class of 75% of NRSA sites. Although model evaluations suggested good discrimination among condition classes, we present maps as predicted probabilities of good condition, given upstream and nearby landscape settings. Inversely, the maps can be interpreted as the probability of a stream being in poor condition, given human-related watershed alterations. These predictions are available for download from the USEPA's StreamCat website. Finally, we illustrate how these predictions could be used to prioritize streams for conservation or restoration.

摘要

了解和绘制河流生物状况的空间变化可以为保护、评估和恢复河流生态系统提供重要工具。美国环保署(USEPA)的 2008-2009 年国家河流和溪流评估(NRSA)根据底栖无脊椎动物组合的多指标指数,总结了美国大陆内处于良好、中等或较差生物状况的河流长度比例。然而,状况通常在区域或国家范围内进行总结,这些评估并不能深入了解未采样地点的状况空间分布。我们使用随机森林模型来模拟和预测美国大陆数万公里河流的可能状况,该模型基于附近和上游的景观特征,包括对流域的人为改变。为此,我们将 NRSA 采样点与 USEPA 的 StreamCat 数据集相关联;这是一个包含美国大陆所有 1:100000 比例尺的溪流及其相关流域的数百个景观指标的数据库。StreamCat 数据为建模提供了附近和上游土地利用、土地覆盖、气候和其他景观特征的地理空间指标。在全国范围内,该模型正确预测了 75%的 NRSA 站点的生物状况类别。尽管模型评估表明对状况类别具有良好的区分能力,但我们根据上游和附近的景观设置提供了良好状况的预测概率图。相反,这些地图可以解释为给定与人类相关的流域改变,溪流处于较差状况的概率。这些预测可从 USEPA 的 StreamCat 网站下载。最后,我们说明了如何使用这些预测来优先考虑溪流的保护或恢复。

相似文献

1
Predictive mapping of the biotic condition of conterminous U.S. rivers and streams.
Ecol Appl. 2017 Dec;27(8):2397-2415. doi: 10.1002/eap.1617. Epub 2017 Nov 3.
3
Mapping watershed integrity for the conterminous United States.
Ecol Indic. 2018 Feb 1;85:1133-1148. doi: 10.1016/j.ecolind.2017.10.070.
4
Assessment of dam effects on streams and fish assemblages of the conterminous USA.
Sci Total Environ. 2017 May 15;586:879-889. doi: 10.1016/j.scitotenv.2017.02.067. Epub 2017 Feb 21.
5
Effectiveness of landscape indicators for explaining the variability of benthic macro-invertebrates in urban streams.
J Environ Manage. 2023 Sep 15;342:118130. doi: 10.1016/j.jenvman.2023.118130. Epub 2023 May 12.
6
The use of multiscale stressors with biological condition assessments: A framework to advance the assessment and management of streams.
Sci Total Environ. 2020 Oct 1;737:139699. doi: 10.1016/j.scitotenv.2020.139699. Epub 2020 May 26.
7
Random Forest models to estimate bankfull and low flow channel widths and depths across the conterminous United States.
J Am Water Resour Assoc. 2023 Oct 1;59(5):1099-1114. doi: 10.1111/1752-1688.13116.
10

引用本文的文献

4
Nutrient Explorer: An analytical framework to visualize and investigate drivers of surface water quality.
Environ Model Softw. 2023 Dec;170. doi: 10.1016/j.envsoft.2023.105853.
5
Prioritizing river basins for nutrient studies.
Environ Monit Assess. 2024 Feb 9;196(3):248. doi: 10.1007/s10661-023-12266-7.
6
Random Forest models to estimate bankfull and low flow channel widths and depths across the conterminous United States.
J Am Water Resour Assoc. 2023 Oct 1;59(5):1099-1114. doi: 10.1111/1752-1688.13116.
8
Estimating biotic integrity to capture existence value of freshwater ecosystems.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2120259119. doi: 10.1073/pnas.2120259119. Epub 2023 Apr 24.
10
The Biological Assessment and Rehabilitation of the World's Rivers: An Overview.
Water (Basel). 2021 Jan 31;13(3):371. doi: 10.3390/w13030371.

本文引用的文献

1
Mapping watershed integrity for the conterminous United States.
Ecol Indic. 2018 Feb 1;85:1133-1148. doi: 10.1016/j.ecolind.2017.10.070.
2
Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology.
Environ Monit Assess. 2017 Jul;189(7):316. doi: 10.1007/s10661-017-6025-0. Epub 2017 Jun 6.
3
An experimental study of the intrinsic stability of random forest variable importance measures.
BMC Bioinformatics. 2016 Feb 3;17:60. doi: 10.1186/s12859-016-0900-5.
4
Importance of Natural and Anthropogenic Environmental Factors to Fish Communities of the Fox River in Illinois.
Environ Manage. 2016 Feb;57(2):389-411. doi: 10.1007/s00267-015-0611-0. Epub 2015 Sep 24.
5
Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs.
Environ Monit Assess. 2015 Jan;187(1):4132. doi: 10.1007/s10661-014-4132-8. Epub 2014 Dec 9.
6
Correspondence of biological condition models of California streams at statewide and regional scales.
Environ Monit Assess. 2015 Jan;187(1):4086. doi: 10.1007/s10661-014-4086-x. Epub 2014 Nov 11.
7
Conservation. Why should we care about temporary waterways?
Science. 2014 Mar 7;343(6175):1080-1. doi: 10.1126/science.1246666.
8
High-resolution global maps of 21st-century forest cover change.
Science. 2013 Nov 15;342(6160):850-3. doi: 10.1126/science.1244693.
9
Predicting the biological condition of streams: use of geospatial indicators of natural and anthropogenic characteristics of watersheds.
Environ Monit Assess. 2009 Apr;151(1-4):143-60. doi: 10.1007/s10661-008-0256-z. Epub 2008 May 21.
10
A bioassessment approach for mid-continent great rivers: the Upper Mississippi, Missouri, and Ohio (USA).
Environ Monit Assess. 2009 May;152(1-4):425-42. doi: 10.1007/s10661-008-0327-1. Epub 2008 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验