Pitzer Martin, Fehre Kilian, Kunitski Maksim, Jahnke Till, Schmidt Lothar, Schmidt-Böcking Horst, Dörner Reinhard, Schöffler Markus
Institut für Kernphysik, Goethe-Universität Frankfurt am Main; Experimentalphysik IV, Universität Kassel.
Institut für Kernphysik, Goethe-Universität Frankfurt am Main.
J Vis Exp. 2017 Aug 18(126):56062. doi: 10.3791/56062.
This article shows how the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) or the "reaction microscope" technique can be used to distinguish between enantiomers (stereoisomers) of simple chiral species on the level of individual molecules. In this approach, a gaseous molecular jet of the sample expands into a vacuum chamber and intersects with femtosecond (fs) laser pulses. The high intensity of the pulses leads to fast multiple ionization, igniting a so-called Coulomb Explosion that produces several cationic (positively charged) fragments. An electrostatic field guides these cations onto time- and position-sensitive detectors. Similar to a time-of-flight mass spectrometer, the arrival time of each ion yields information on its mass. As a surplus, the electrostatic field is adjusted in a way that the emission direction and the kinetic energy after fragmentation lead to variations in the time-of-flight and in the impact position on the detector. Each ion impact creates an electronic signal in the detector; this signal is treated by high-frequency electronics and recorded event by event by a computer. The registered data correspond to the impact times and positions. With these data, the energy and the emission direction of each fragment can be calculated. These values are related to structural properties of the molecule under investigation, i.e. to the bond lengths and relative positions of the atoms, allowing to determine molecule by molecule the handedness of simple chiral species and other isomeric features.
本文展示了如何使用COLTRIMS(冷靶反冲离子动量谱)或“反应显微镜”技术在单个分子层面区分简单手性物种的对映体(立体异构体)。在这种方法中,样品的气态分子束膨胀进入真空室,并与飞秒(fs)激光脉冲相交。脉冲的高强度导致快速多次电离,引发所谓的库仑爆炸,产生几个阳离子(带正电)碎片。静电场将这些阳离子引导到对时间和位置敏感的探测器上。类似于飞行时间质谱仪,每个离子的到达时间会产生有关其质量的信息。此外,静电场的调整方式使得碎片后的发射方向和动能会导致飞行时间和探测器上撞击位置的变化。每次离子撞击都会在探测器中产生一个电子信号;该信号由高频电子设备处理,并由计算机逐个事件进行记录。记录的数据对应于撞击时间和位置。利用这些数据,可以计算出每个碎片的能量和发射方向。这些值与所研究分子的结构特性相关,即与键长和原子的相对位置相关,从而能够逐个分子地确定简单手性物种的手性和其他异构特征。