Suppr超能文献

基于代谢网络和功能信息的慢性阻塞性肺疾病候选基因优先级排序

Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

作者信息

Wang Xinyan, Li Wan, Zhang Yihua, Feng Yuyan, Zhao Xilei, He Yuehan, Zhang Jun, Chen Lina

机构信息

Department of Respiratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.

出版信息

PLoS One. 2017 Sep 5;12(9):e0184299. doi: 10.1371/journal.pone.0184299. eCollection 2017.

Abstract

Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

摘要

慢性阻塞性肺疾病(COPD)是一种多因素疾病,其中代谢紊乱起着重要作用。本文将功能信息整合到COPD相关代谢网络中以评估基因间的相似性。然后将一种基因优先级排序方法应用于COPD相关代谢网络,以对COPD候选基因进行优先级排序。在文献验证和功能富集分析方面,该基因优先级排序方法均优于ToppGene和ToppNet。从代谢角度结合功能信息进行优先级排序的顶级基因有助于更好地理解该疾病的分子机制。排名前100的基因可能是诊断和有效治疗的潜在标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25bd/5584748/52aef2dcdecc/pone.0184299.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验