Suppr超能文献

相似文献

1
Self-healing catalysis in water.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13380-13384. doi: 10.1073/pnas.1711836114. Epub 2017 Sep 5.
2
Stabilized CdSe-CoPi composite photoanode for light-assisted water oxidation by transformation of a CdSe/cobalt metal thin film.
ACS Appl Mater Interfaces. 2013 Apr 10;5(7):2364-7. doi: 10.1021/am400364u. Epub 2013 Mar 28.
3
Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH.
J Am Chem Soc. 2010 Nov 24;132(46):16501-9. doi: 10.1021/ja106102b. Epub 2010 Oct 26.
4
In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+.
Science. 2008 Aug 22;321(5892):1072-5. doi: 10.1126/science.1162018. Epub 2008 Jul 31.
5
Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution.
Angew Chem Int Ed Engl. 2015 Apr 13;54(16):4870-5. doi: 10.1002/anie.201412389. Epub 2015 Feb 27.
6
A functionally stable manganese oxide oxygen evolution catalyst in acid.
J Am Chem Soc. 2014 Apr 23;136(16):6002-10. doi: 10.1021/ja413147e. Epub 2014 Apr 11.
7
Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting.
Nanoscale. 2015 Apr 21;7(15):6722-8. doi: 10.1039/c5nr00863h.
8
Splitting water with cobalt.
Angew Chem Int Ed Engl. 2011 Aug 1;50(32):7238-66. doi: 10.1002/anie.201007987. Epub 2011 Jul 11.
9
Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.
ChemSusChem. 2014 May;7(5):1301-10. doi: 10.1002/cssc.201301019. Epub 2014 Jan 21.
10
Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5526-9. doi: 10.1073/pnas.1604628113. Epub 2016 May 2.

引用本文的文献

2
Unassisted self-healing photocatalysts based on Le Chatelier's principle.
Commun Chem. 2025 Apr 14;8(1):112. doi: 10.1038/s42004-025-01500-7.
3
Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen-Oxygen Radical Coupling Pathway.
Adv Mater. 2025 Mar;37(9):e2416362. doi: 10.1002/adma.202416362. Epub 2025 Jan 15.
4
On the Tracks to "Smart" Single-Atom Catalysts.
J Am Chem Soc. 2025 Jan 22;147(3):2275-2290. doi: 10.1021/jacs.4c15803. Epub 2025 Jan 6.
5
What Is to Be Expected from Heterogeneous Catalysis in the Pipeline to Circular Economy?
ChemSusChem. 2025 Mar 3;18(5):e202402064. doi: 10.1002/cssc.202402064. Epub 2024 Nov 27.
6
Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging.
Nat Commun. 2024 Sep 27;15(1):8362. doi: 10.1038/s41467-024-52536-7.
8
Isolation and Crystallographic Characterization of an Octavalent CoO Diamond Core.
J Am Chem Soc. 2024 Aug 28;146(34):23998-24008. doi: 10.1021/jacs.4c07335. Epub 2024 Aug 15.
9
Thermocatalytic epoxidation by cobalt sulfide inspired by the material's electrocatalytic activity for oxygen evolution reaction.
Catal Sci Technol. 2024 Jul 16;14(16):4550-4565. doi: 10.1039/d4cy00518j. eCollection 2024 Aug 12.
10
Unraveling the Role of Particle Size and Nanostructuring on the Oxygen Evolution Activity of Fe-Doped NiO.
ACS Catal. 2024 Jul 17;14(15):11389-11399. doi: 10.1021/acscatal.4c02329. eCollection 2024 Aug 2.

本文引用的文献

1
Solar Fuels and Solar Chemicals Industry.
Acc Chem Res. 2017 Mar 21;50(3):616-619. doi: 10.1021/acs.accounts.6b00615.
2
Ambient nitrogen reduction cycle using a hybrid inorganic-biological system.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6450-6455. doi: 10.1073/pnas.1706371114. Epub 2017 Jun 6.
3
In situ characterization of cofacial Co(IV) centers in CoO cubane: Modeling the high-valent active site in oxygen-evolving catalysts.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3855-3860. doi: 10.1073/pnas.1701816114. Epub 2017 Mar 27.
4
Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.
Science. 2016 Jun 3;352(6290):1210-3. doi: 10.1126/science.aaf5039.
5
Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts.
J Am Chem Soc. 2016 Mar 30;138(12):4229-36. doi: 10.1021/jacs.6b00762. Epub 2016 Mar 17.
6
Hybrid bioinorganic approach to solar-to-chemical conversion.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11461-6. doi: 10.1073/pnas.1508075112. Epub 2015 Aug 24.
7
Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2337-42. doi: 10.1073/pnas.1424872112. Epub 2015 Feb 9.
8
Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper.
Nature. 2014 Apr 24;508(7497):504-7. doi: 10.1038/nature13249. Epub 2014 Apr 9.
9
A functionally stable manganese oxide oxygen evolution catalyst in acid.
J Am Chem Soc. 2014 Apr 23;136(16):6002-10. doi: 10.1021/ja413147e. Epub 2014 Apr 11.
10
Mechanism of cobalt self-exchange electron transfer.
J Am Chem Soc. 2013 Oct 9;135(40):15053-61. doi: 10.1021/ja404469y. Epub 2013 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验